首页> 外文期刊>ACM Transactions on Interactive Intelligent Systems >Machine Learning for Social Multiparty Human-Robot Interaction
【24h】

Machine Learning for Social Multiparty Human-Robot Interaction

机译:社交多方人机交互的机器学习

获取原文
获取原文并翻译 | 示例

摘要

We describe a variety of machine-learning techniques that are being applied to social multiuser human-robot interaction using a robot bartender in our scenario. We first present a data-driven approach to social state recognition based on supervised learning. We then describe an approach to social skills execution-that is, action selection for generating socially appropriate robot behavior-which is based on reinforcement learning, using a data-driven simulation of multiple users to train execution policies for social skills. Next, we describe how these components for social state recognition and skills execution have been integrated into an end-to-end robot bartender system, and we discuss the results of a user evaluation. Finally, we present an alternative unsupervised learning framework that combines social state recognition and social skills execution based on hierarchical Dirichlet processes and an infinite POMDP interaction manager. The models make use of data from both human-human interactions collected in a number of German bars and human-robot interactions recorded in the evaluation of an initial version of the system.
机译:我们描述了在我们的场景中使用机器人调酒师应用于社交多用户人机交互的各种机器学习技术。我们首先提出一种基于监督学习的数据驱动的社会状态识别方法。然后,我们描述一种执行社交技能的方法,即基于社交学习强化的方法,该操作用于生成社交上适当的机器人行为,该方法使用多个用户的数据驱动模拟来训练社交技能的执行策略。接下来,我们描述如何将这些用于社交状态识别和技能执行的组件集成到端到端机器人调酒师系统中,并讨论用户评估的结果。最后,我们提出了一个替代的无监督学习框架,该框架结合了基于分层Dirichlet流程和无限POMDP交互管理器的社会状态识别和社会技能执行。该模型利用了从许多德国酒吧收集的人与人之间的交互以及在系统初始版本的评估中记录的人与机器人的交互中的数据。

著录项

  • 来源
    《ACM Transactions on Interactive Intelligent Systems》 |2014年第3期|14.1-14.32|共32页
  • 作者单位

    Interaction Lab, School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom;

    Interaction Lab, School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom;

    Interaction Lab, School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom;

    Interaction Lab, School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Social robotics; machine learning; multiuser interaction;

    机译:社会机器人;机器学习多用户交互;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号