首页> 外文期刊>Journal on multimodal user interfaces >A novel focus encoding scheme for addressee detection in multiparty interaction using machine learning algorithms
【24h】

A novel focus encoding scheme for addressee detection in multiparty interaction using machine learning algorithms

机译:采用机器学习算法的多方交互中的寻址对焦点编码方案

获取原文
获取原文并翻译 | 示例

摘要

Addressee detection is a fundamental task for seamless dialogue management and turn taking in human-agent interaction. Though addressee detection is implicit in dyadic interaction, it becomes a challenging task when more than two participants are involved. This article proposes multiple addressee detection models based on smart feature selection and focus encoding schemes. The models are trained using different machine learning and deep learning algorithms. This research work improves existing baseline accuracies for addressee prediction on two datasets. In addition, the article explores the impact of different focus encoding schemes in several addressee detection cases. Finally, an implementation strategy for addressee detection model in real-time is discussed.
机译:收件人检测是无缝对话管理的基本任务,并转向人工代理交互。 虽然收件人检测隐含在二元互动中,但是当涉及超过两个参与者时,它成为一个具有挑战性的任务。 本文提出了基于智能特征选择和焦点编码方案的多个收件人检测模型。 该模型采用不同的机器学习和深度学习算法培训。 这项研究工作提高了两个数据集的收纳预测的现有基线精度。 此外,本文探讨了不同焦点编码方案在若干地址检测案例中的影响。 最后,讨论了实时地收纳检测模型的实施策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号