首页> 外文OA文献 >Joint Multisensor Fusion and Tracking Using Distributed Radars
【2h】

Joint Multisensor Fusion and Tracking Using Distributed Radars

机译:使用分布式雷达的联合多传感器融合和跟踪

摘要

This thesis deals with multisensor fusion in the presence of systematic errors inthe context of target tracking. A typical target tracking problem consists of multiplesensors producing position measurements of multiple targets, for instanceaircraft. The goal is to establish tracks on all targets that are observed by the sensors.A track usually consists of an id, such as a track number, target position,and target velocity. The systematic errors are modeled as measurement biases. Ifunaccounted for these biases may lead to inaccurate estimates of the target state(position and in particular velocity) and a single target may appear as several targetsif the biases are large enough (ghost tracks). Furthermore, if all sensors arebiased it is challenging to find an unbiased estimate of target state with respectto a coordinate system independent of the sensors.In this thesis the sensors are radars producing measurements in 3D. The systematicerrors (biases) are called alignment bias, location bias and sensor bias.The first two are related to sensor deployment, as they describe errors in orientation(misalignment) and sensor placement (location). The sensor bias addresseserrors caused by sensor imperfections. These biases are estimated relative to asensor independent coordinate system and relative to a sensor of reference (mastersensor). A novel distinction is made in this context, where a universal biasestimator (UBE) is used relative to sensor independent coordinates, while an absolutebias estimator (ABE) is used relative to a master sensor. The estimabilityof the biases is investigated using a novel estimability index, which quantifieswhether a bias can be estimated more accurately with the available measurements.The estimability index is based on the Cramer-Rao Lower Bound. The study of estimability is used to determine a multisensor-multitarget scenariowhere several bias estimators are compared with respect to performanceusing a Monte Carlo simulation. The simulation includes alignment, locationand sensor biases, and all sensors are affected. The estimators are evaluated insensor independent coordinates and master sensor coordinates. Two Kalman Filter(KF) based estimators are used as references. A lower bound is representedby a KF where the bias values are known, while an upper bound is representedby a KF where the measurement noise is increased to reflect the biases present.The alignment, location and sensor biases contain three elements each, to a totalof nine bias values to estimate per sensor. The UBE performs well (belowthe upper bound) in sensor independent coordinates when one of the sensor biasvalues are removed from the simulation, estimating eight bias values per sensor.Performance is close to the lower bound when the location bias only is removed,yielding six bias values per sensor. In master sensor coordinates the ABE hasthe best performance. However a simplified version has almost identical performance.It is called the Relative Bias Estimator (RBE), and it neglects the biasesof the master sensor. This is a popular assumption in the literature, and this studyconfirms that this simplification should be preferred in an implementation.Possible extensions of this work are explored. First curved target motion is exploredby letting the target move at constant altitude above the Earth. The curvatureof the trajectory results in increased bias estimability. However, observingthis curvature requires observing the target for a long time with high accuracy.This is challenging in practice, and therefore this path was not explored further.Second, extending the application to Air Traffic Control (ATC) is considered. Atairports radars typically produce 2D measurements, so to extend the developed3D bias estimators it is necessary to incorporate altitude measurements from theaircraft Mode C transponders with these 2D measurements. The altitude measurementsare quantized and received with a coarse resolution which may havea negative impact on bias estimator performance since the vertical velocity estimatebecomes unstable. Several estimators are developed to estimate altitudeand vertical velocity, and these are tested on real measurement data for a performancecomparison. The main contribution is the use of the Interacting MultipleModel (IMM) and Unscented Kalman Filter (UKF) based estimators on quantizedreal world measurements. The UKF produces the best performance forlong term altitude predictions, meaning that its vertical velocity estimate is themost stable.
机译:本文研究了在目标跟踪环境下存在系统误差的多传感器融合。典型的目标跟踪问题由多个传感器组成,这些传感器产生多个目标(例如飞机)的位置测量值。目标是在传感器所观察到的所有目标上建立轨道。轨道通常由ID组成,例如轨道号,目标位置和目标速度。系统误差被建模为测量偏差。如果无法解决这些偏差,可能导致目标状态(位置,尤其是速度)的估计不准确,如果偏差足够大(鬼迹),单个目标可能会显示为多个目标。此外,如果所有传感器都偏置,则相对于独立于传感器的坐标系,要找到目标状态的无偏差估计值很有挑战。在本文中,传感器是产生3D测量值的雷达。系统误差(偏差)被称为对准偏差,位置偏差和传感器偏差。前两个与传感器部署有关,因为它们描述了方向(未对准)和传感器放置(位置)中的误差。传感器偏置可解决由传感器缺陷引起的错误。相对于独立于传感器的坐标系和相对于参考传感器(主传感器)估计这些偏差。在这种情况下进行了新颖的区分,其中相对于传感器独立坐标使用通用偏差估计器(UBE),而相对于主传感器使用绝对偏差估计器(ABE)。使用新的可估计性指数研究了偏倚的可估计性,该指数可量化是否可以通过可用的测量更准确地估计偏见。可估计性指数基于Cramer-Rao下界。可估计性研究用于确定多传感器多目标方案,其中使用蒙特卡洛模拟比较了几种偏差估计器的性能。仿真包括对准,位置和传感器偏置,并且所有传感器都受到影响。估计器在独立于传感器的坐标和主传感器坐标中进行评估。两个基于卡尔曼滤波器(KF)的估计器用作参考。下限由已知偏差值的KF表示,而上限由增加测量噪声以反映存在的偏差的KF表示。对准,位置和传感器偏置各包含三个元素,总共九个偏置值以估计每个传感器。当从模拟中删除一个传感器偏置值时,UBE在独立于传感器的坐标中表现良好(在上限以下),每个传感器估计八个偏置值。仅去除位置偏置时,性能接近下限,产生六个偏置每个传感器的值。在主传感器坐标中,ABE具有最佳性能。但是,简化版本的性能几乎相同,称为相对偏置估算器(RBE),它忽略了主传感器的偏置。这是文献中一个普遍的假设,并且本研究证实,在实现中应优先考虑这种简化方法。探讨了这项工作的可能扩展。通过使目标以恒定的高度在地球上方移动来探索第一个弯曲的目标运动。轨迹的曲率导致偏置估计性增加。然而,观察该曲率需要长时间高精度地观察目标,这在实践中具有挑战性,因此没有进一步探索此路径。其次,考虑将应用扩展到空中交通管制(ATC)。机载雷达通常会产生2D测量值,因此要扩展已开发的3D偏差估计器,必须将飞机C模式应答器的高度测量值与这些2D测量值结合起来。高度测量值被量化并以较粗的分辨率接收,这可能会对偏差估算器的性能产生负面影响,因为垂直速度估算变得不稳定。开发了几种估计器来估计高度和垂直速度,并在实际测量数据上对它们进行了测试以进行性能比较。主要贡献是在量化的现实世界测量结果上使用了基于交互多重模型(IMM)和无味卡尔曼滤波器(UKF)的估计器。 UKF在长期的高度预测中表现出最好的性能,这意味着它的垂直速度估计是最稳定的。

著录项

  • 作者

    Topland Morten Pedersen;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号