首页> 外文会议>Control System, Computing and Engineering (ICCSCE), 2011 IEEE International Conference on >Multisensor data fusion: Target tracking with a doppler radar and an Electro-Optic camera
【24h】

Multisensor data fusion: Target tracking with a doppler radar and an Electro-Optic camera

机译:多传感器数据融合:利用多普勒雷达和光电摄像机进行目标跟踪

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the problem of multisensor data fusion for target tracking using a Doppler radar with range rate measurements and an Electro-Optic (EO) camera. We present three fusion architectures, named FA1-FA3, to perform data fusion using the above mentioned sensors. FA1 and FA2 are distributed fusion architectures employing the information matrix fusion method with dynamic feedback. In FA1, radar and camera pseudo measurements are formed that allow us to make use of a linear Kalman Filter (KF) for the radar local filter and an Extended Kalman Filter (EKF) for the EO camera local filter. In FA2, the radar and camera measurements are used directly and therefore the system comprises two EKFs. FA3 is a centralised architecture where the data fusion is performed by way of the measurement fusion method. The final contribution of this paper is a performance comparison of these sensor data fusion techniques when making use of range rate measurements. In order to evaluate the performance of the fusion architectures, Monte Carlo simulations are performed and two filter metrics are presented: an absolute metric - the root mean squared error (RMSE) and a performance metric - the average normalised estimation error squared (ANEES). The results show that the fusion architectures presented are accurate, stable and credible.
机译:本文解决了使用具有测距率测量的多普勒雷达和光电(EO)摄像机进行目标跟踪的多传感器数据融合问题。我们提出了三种融合架构,称为FA1-FA3,以使用上述传感器执行数据融合。 FA1和FA2是采用具有动态反馈的信息矩阵融合方法的分布式融合体系结构。在FA1中,形成了雷达和摄像机伪测量,这使我们可以将线性卡尔曼滤波器(KF)用于雷达本地滤波器,将扩展卡尔曼滤波器(EKF)用于EO摄像机本地滤波器。在FA2中,直接使用雷达和摄像机测量,因此系统包括两个EKF。 FA3是一种集中式体系结构,其中数据融合是通过测量融合方法执行的。本文的最后贡献是当使用测距率测量时,这些传感器数据融合技术的性能比较。为了评估融合体系结构的性能,执行了蒙特卡洛模拟,并提出了两个滤波器度量:绝对度量-均方根误差(RMSE)和性能度量-平均归一化估计误差平方(ANEES)。结果表明,所提出的融合架构是准确,稳定和可信的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号