首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Flexible Fusion Structure-Based Performance Optimization Learning for Multisensor Target Tracking
【2h】

Flexible Fusion Structure-Based Performance Optimization Learning for Multisensor Target Tracking

机译:基于柔性融合结构的多传感器目标跟踪性能优化学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Compared with the fixed fusion structure, the flexible fusion structure with mixed fusion methods has better adjustment performance for the complex air task network systems, and it can effectively help the system to achieve the goal under the given constraints. Because of the time-varying situation of the task network system induced by moving nodes and non-cooperative target, and limitations such as communication bandwidth and measurement distance, it is necessary to dynamically adjust the system fusion structure including sensors and fusion methods in a given adjustment period. Aiming at this, this paper studies the design of a flexible fusion algorithm by using an optimization learning technology. The purpose is to dynamically determine the sensors’ numbers and the associated sensors to take part in the centralized and distributed fusion processes, respectively, herein termed sensor subsets selection. Firstly, two system performance indexes are introduced. Especially, the survivability index is presented and defined. Secondly, based on the two indexes and considering other conditions such as communication bandwidth and measurement distance, optimization models for both single target tracking and multi-target tracking are established. Correspondingly, solution steps are given for the two optimization models in detail. Simulation examples are demonstrated to validate the proposed algorithms.
机译:与固定融合结构相比,采用混合融合方法的柔性融合结构对复杂的空中任务网络系统具有更好的调整性能,可以有效地帮助系统在给定的约束下达到目标。由于移动节点和不合作目标引起的任务网络系统的时变情况,以及通信带宽和测量距离等限制,因此必须在给定的条件下动态调整包括传感器和融合方法的系统融合结构。调整期。为此,本文采用优化学习技术对柔性融合算法的设计进行了研究。目的是动态确定传感器的数量和关联的传感器,分别参与集中式和分布式融合过程,在此称为传感器子集选择。首先,介绍了两个系统性能指标。特别是,提出并定义了生存能力指标。其次,基于这两个指标,并考虑通信带宽,测量距离等其他条件,建立了单目标跟踪和多目标跟踪的优化模型。相应地,详细给出了两个优化模型的求解步骤。仿真实例证明了所提出算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号