首页> 美国政府科技报告 >Experiments in cooperative-arm object manipulation with a two-armed free-flying robot
【24h】

Experiments in cooperative-arm object manipulation with a two-armed free-flying robot

机译:使用双臂自由飞行机器人进行协同臂对象操作的实验

获取原文

摘要

Developing computed-torque controllers for complex manipulator systems using current techniques and tools is difficult because they address the issues pertinent to simulation, as opposed to control. A new formulation of computed-torque (CT) control that leads to an automated computer-torque robot controller program is presented. This automated tool is used for simulations and experimental demonstrations of endpoint and object control from a free-flying robot. A new computed-torque formulation states the multibody control problem in an elegant, homogeneous, and practical form. A recursive dynamics algorithm is presented that numerically evaluates kinematics and dynamics terms for multibody systems given a topological description. Manipulators may be free-flying, and may have closed-chain constraints. With the exception of object squeeze-force control, the algorithm does not deal with actuator redundancy. The algorithm is used to implement an automated 2D computed-torque dynamics and control package that allows joint, endpoint, orientation, momentum, and object squeeze-force control. This package obviates the need for hand-derivation of kinematics and dynamics, and is used for both simulation and experimental control. Endpoint control experiments are performed on a laboratory robot that has two arms to manipulate payloads, and uses an air bearing to achieve very-low drag characteristics. Simulations and experimental data for endpoint and object controllers are presented for the experimental robot - a complex dynamic system. There is a certain rather wide set of conditions under which CT endpoint controllers can neglect robot base accelerations (but not motions) and achieve comparable performance including base accelerations in the model. The regime over which this simplification holds is explored by simulation and experiment.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号