首页> 美国政府科技报告 >Life prediction modeling of solder interconnects for electronic systems
【24h】

Life prediction modeling of solder interconnects for electronic systems

机译:电子系统焊料互连的寿命预测建模

获取原文

摘要

A microstructurally-based computational simulation is presented that predicts the behavior and lifetime of solder interconnects for electronic applications. This finite element simulation is based on an internal state variable constitutive model that captures both creep and plasticity, and accounts for microstructural evolution. The basis of the microstructural evolution is a simple model that captures the grain size and microstructural defects in the solder. The mechanical behavior of the solder is incorporated into the model in the form of time-dependent viscoplastic equations derived from experimental creep tests. The unique aspect of this methodology is that the constants in the constitutive relations of the model are determined from experimental tests. This paper presents the constitutive relations and the experimental means by which the constants in the equations are determined. The fatigue lifetime of the solder interconnects is predicted using a damage parameter (or grain size) that is an output of the computer simulation. This damage parameter methodology is discussed and experimentally validated.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号