首页> 外文学位 >Continuum damage mechanics based failure prediction methodology for tin-silver-copper solder alloy interconnects in electronic packaging .
【24h】

Continuum damage mechanics based failure prediction methodology for tin-silver-copper solder alloy interconnects in electronic packaging .

机译:电子封装中锡银铜焊料合金互连的基于连续损伤力学的故障预测方法

获取原文
获取原文并翻译 | 示例

摘要

Lead-free solders are soon to become the standard for use in electronics due to legislation prohibiting the use of lead. Experts generally agree that various Sn-Ag-Cu alloys are the best alternatives to the formerly ubiquitous eutectic Sn-Pb solder. To facilitate adoption of the 95.5Sn-3.9Ag-0.6Cu solder, a research partnership was created between Sandia National Laboratories and Stanford University to develop a methodology for predicting fatigue behavior of this alloy under isothermal and thermal mechanical conditions.; To begin, Sandia researchers conducted extensive material testing on the 95.5Sn-3.9Ag-0.6Cu alloy including; compressive stress-strain and creep testing of as-cast and thermally-aged cylinders, isothermal fatigue testing of joints in a double lap-shear (DLS) test vehicle, and thermal mechanical fatigue (TMF) testing of joints in a ball grid array (BGA) package.; To facilitate computational modeling, a Sandia developed unified creep plasticity (UCP) constitutive model is implemented in the commercial finite element analysis (FEA) software ANSYSRTM. A continuum damage model is next coupled to the UCP model (the unified creep plasticity damage UCPD model) to capture stress softening during fatigue. Material and damage parameters are fit to capture temperature effects from -55°C to 160°C. The UCPD model (mathematical structure and 95.5Sn-3.9Ag-0.6Cu parameters) predicts the true physical response of lead-free solder as demonstrated by comparison of simulation and analogous experimental results.; Next, DLS fatigue crack length empirical data are interpreted and discussed. A new crack length prediction methodology is formulated by interpreting crack growth in terms of viscoplastic strain energy density increments and correlated to the empirical data. The prediction methodology is capable of predicting crack growth in isothermally fatigued 95.5Sn-3.9Ag-0.6Cu joints as illustrated by comparison with empirical data.; Finally, the prediction scheme is tested and proven capable of predicting crack growth for the more general case of TMF. First, TMF crack length data from a BGA package is analyzed and discussed. Next, FEA models are built and exercised to simulate TMF deformation in the BGA assembly and results are extracted to inform the prediction methodology. A comparison with available data verifies that the numerical scheme is capable of predicting fatigue crack lengths in 95.5Sn-3.9Ag-0.6Cu solder joints undergoing TMF.
机译:由于立法禁止使用铅,无铅焊料很快将成为电子产品的标准。专家们普遍认为,各种Sn-Ag-Cu合金是以前普遍存在的共晶Sn-Pb焊料的最佳替代品。为了促进95.5Sn-3.9Ag-0.6Cu焊料的采用,桑迪亚国家实验室和斯坦福大学之间建立了研究合作关系,以开发一种预测该合金在等温和热机械条件下的疲劳行为的方法。首先,Sandia研究人员对95.5Sn-3.9Ag-0.6Cu合金进行了广泛的材料测试,包括:铸造和热老化汽缸的压缩应力-应变和蠕变测试,双搭剪(DLS)测试车中接头的等温疲劳测试以及球栅阵列中接头的热机械疲劳(TMF)测试( BGA)封装。为了促进计算建模,在商业有限元分析(FEA)软件ANSYSRTM中实施了Sandia开发的统一蠕变可塑性(UCP)本构模型。接下来,将连续损伤模型与UCP模型(统一的蠕变可塑性损伤UCPD模型)耦合,以捕获疲劳过程中的应力软化。材料和损伤参数适合捕获-55°C至160°C的温度影响。 UCPD模型(数学结构和95.5Sn-3.9Ag-0.6Cu参数)预测了无铅焊料的真实物理响应,如通过仿真和类似实验结果的比较所证明的那样。接下来,将解释和讨论DLS疲劳裂纹长度的经验数据。通过根据粘塑性应变能密度增量解释裂纹扩展并与经验数据相关,从而制定了一种新的裂纹长度预测方法。预测方法能够预测等温疲劳的95.5Sn-3.9Ag-0.6Cu接头的裂纹扩展,并与经验数据进行比较。最后,测试并验证了该预测方案能够预测更一般的TMF情况下的裂纹扩展。首先,对来自BGA封装的TMF裂纹长度数据进行了分析和讨论。接下来,建立并执行FEA模型以模拟BGA组件中的TMF变形,并提取结果以告知预测方法。与现有数据进行的比较验证了该数值方案能够预测经过TMF的95.5Sn-3.9Ag-0.6Cu焊点的疲劳裂纹长度。

著录项

  • 作者

    Pierce, David Michael.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Applied Mechanics.; Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 403 p.
  • 总页数 403
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用力学;机械、仪表工业;
  • 关键词

  • 入库时间 2022-08-17 11:39:18

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号