首页> 美国政府科技报告 >Robust Intelligence (RI) Under Uncertainty: Mathematical Foundations of Autonomous Hybrid (Human-Machine-Robot) Teams, Organizations and Systems
【24h】

Robust Intelligence (RI) Under Uncertainty: Mathematical Foundations of Autonomous Hybrid (Human-Machine-Robot) Teams, Organizations and Systems

机译:不确定性下的鲁棒智能(RI):自主混合(人机器人)团队,组织和系统的数学基础

获取原文

摘要

To develop a theory of Robust Intelligence (RI), we continue to advance our theory of interdependence on the efficient and effective control of systems of autonomous hybrid teams composed of robots, machines and humans working interchangeably. As is the case with humans we believe that RI is less likely to be achieved by individual computational agents; instead, we propose that a better path to RI is with interdependent agents. However, unlike conventional computational models where agents act independently of neighbors, where, for example, a predator mathematically consumes its prey or not as a function of a random interaction process, dynamic interdependence means that agents dynamically respond to the bi-directional signals of actual or potential presence of other agents (e.g., in states poised to fight or flight), a significant increase over conventional modeling complexity. That this problem is unsolved, mathematically and conceptually, precludes hybrid teams from processing information like human teams operating under challenges and perceived threats. To simplify this problem, we use bistable models for interdependence with a focus on teams and firms as we increase complexity to the level of systems. As part of the problem, in this paper, and countering simplification, sentient multiagent systems require an aggregation process like data fusion. But the conventional use of fusion for the control of mobile systems hinges on mathematical convergence into patterns increasing uncertainty whenever divergent information has the potential to process information into knowledge. The goals of our research are: First, to analyze why valid models of interdependence are difficult to build. Second, to reduce uncertainty in decision-making by moderating convergence processes in data aggregation (e.g., fusion) with differential clustering between alternative (orthogonal) views that check convergence processes and promote information processing.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号