首页> 美国政府科技报告 >Identifying Cytochrome P450 Functional Networks and Their Allosteric Regulatory Elements.
【24h】

Identifying Cytochrome P450 Functional Networks and Their Allosteric Regulatory Elements.

机译:识别细胞色素p450功能网络及其变构调节元素。

获取原文

摘要

Cytochrome P450 (CYP) enzymes play key roles in drug metabolism and adverse drug-drug interactions. Despite tremendous efforts in the past decades, essential questions regarding the function and activity of CYPs remain unanswered. Here, we used a combination of sequence-based co-evolutionary analysis and structure-based anisotropic thermal diffusion (ATD) molecular dynamics simulations to detect allosteric networks of amino acid residues and characterize their biological and molecular functions. We investigated four CYP subfamilies (CYP1A, CYP2D, CYP2C, and CYP3A) that are involved in 90% of all metabolic drug transformations and identified four amino acid interaction networks associated with specific CYP functionalities, i.e., membrane binding, heme binding, catalytic activity, and dimerization. Interestingly, we did not detect any co-evolved substrate-binding network, suggesting that substrate recognition is specific for each subfamily. Analysis of the membrane binding networks revealed that different CYP proteins adopt different membrane-bound orientations, consistent with the differing substrate preference for each isoform. The catalytic networks were associated with conservation of catalytic function among CYP isoforms, whereas the dimerization network was specific to different CYP isoforms. We further applied low-temperature ATD simulations to verify proposed allosteric sites associated with the heme-binding network and their role in regulating metabolic fate.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号