首页> 外文期刊>Neural computing & applications >Projection-optimal local Fisher discriminant analysis for feature extraction
【24h】

Projection-optimal local Fisher discriminant analysis for feature extraction

机译:投影最优局部Fisher判别分析用于特征提取

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel dimensionality reduction algorithm called projection-optimal local Fisher discriminant analysis (PoLFDA) is proposed in order to address the multimodal problem. Novel weight matrices defined on the projected space can represent the intraclass compactness and the interclass separability. Based on the novel weighted matrices, the local between-class scatter matrix and the local within-class scatter matrix are defined such that the local structure can be preserved. In order to enhance the discriminant ability, we impose an orthogonal constraint on the objective function, which can be regarded as a trace ratio problem. In general, a trace ratio problem does not have a closed-form solution; however, it can be solved using some efficient iterative algorithms. Therefore, we optimize the projection matrix by solving the trace ratio problem iteratively. Experiments on toy data, face, and handwritten digit data sets are conducted to evaluate the performance of PoLFDA; the results and comparisons verify the effectiveness of the proposed method.
机译:为了解决多峰问题,本文提出了一种新的降维算法,称为投影最优局部Fisher判别分析(PoLFDA)。在投影空间上定义的新型权重矩阵可以表示类内部的紧凑性和类间的可分离性。基于新颖的加权矩阵,定义了局部类间散布矩阵和局部类内散布矩阵,从而可以保留局部结构。为了提高判别能力,我们对目标函数施加了正交约束,可以将其视为痕量比问题。通常,迹线比率问题没有封闭形式的解决方案;但是,可以使用一些有效的迭代算法来解决。因此,我们通过迭代解决迹线比率问题来优化投影矩阵。进行了玩具数据,面部和手写数字数据集的实验,以评估PoLFDA的性能;结果与比较验证了所提方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号