...
首页> 外文期刊>International Journal of Advanced Robotic Systems >New Variable Passive-compliant Element Design for Quadruped Adaptation to Stiffness-varying Terrain
【24h】

New Variable Passive-compliant Element Design for Quadruped Adaptation to Stiffness-varying Terrain

机译:新的可变被动兼容元素设计,用于刚度适应刚度变化的地形

获取原文
获取原文并翻译 | 示例

摘要

This paper presents the design of a novel variable passive-compliant (VPC) element utilized as a lower-leg implant of a fully electrically driven quadruped robot. It is designed as a slider-piston mechanism which ensures that the force produced during a foot-ground contact is directly perpendicular to the contact surface of an actuated revolute spring. In this way, by altering the stiffness of quadruped legs in a closed-loop manner, the VPC element enables the quadruped robot to adapt to varying terrain characteristics, ensuring a constant hopping frequency over a wide range of terrain-stiffness variations. The designed VPC element and its beneficial characteristics are described in detail. Mathematical relations are formulated that help to describe the influence of the VPC element during vertical hopping of a quadruped robot. The properties of the quadruped research platform with integrated VPC element were verified in simulation and through experiments.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号