首页> 外文期刊>Discrete mathematics >On the Terwilliger algebra of bipartite distance-regular graphs with Delta(2)=0 and c(2)=2
【24h】

On the Terwilliger algebra of bipartite distance-regular graphs with Delta(2)=0 and c(2)=2

机译:在具有三角形(2)= 0和C(2)= 2的三角形距离的Terwilliger代数 - 常规图形

获取原文
获取原文并翻译 | 示例

摘要

Let Gamma denote a bipartite distance-regular graph with diameter D >= 4 and valency k >= 3. Let X denote the vertex set of Gamma, and let A denote the adjacency matrix of Gamma. For x is an element of X and for 0 <= i <= D, let Gamma(i)(x) denote the set of vertices in X that are distance i from vertex x. Define a parameter Delta(2) in terms of the intersection numbers by Delta(2) = (k - 2)(c(3) - 1) - (c(2) - 1)p(22)(2). It is known that Delta(2) = 0 implies that D <= 5 or c(2) is an element of {1, 2}.
机译:让γ表示直径D> = 4的二分距离常规图,= 4,k> = 3。设x表示伽马的顶点组,让γ表示伽马的邻接矩阵。 对于x是x和0 <= i <= d的元素,让gamma(i)(x)表示x中的x的顶点集,它来自顶点x的距离i。 通过Delta(2)=(k - 2)(c(3) - 1) - (c(2) - 1)p(22)(2),以Δ(2)=(3)=(C(3) - 1)(2)(2))来定义参数增量(2)。 众所周知,Delta(2)= 0意味着D <= 5或C(2)是{1,2}的元素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号