首页> 外文期刊>Neural computing & applications >A joint intensity and edge magnitude-based multilevel thresholding algorithm for the automatic segmentation of pathological MR brain images
【24h】

A joint intensity and edge magnitude-based multilevel thresholding algorithm for the automatic segmentation of pathological MR brain images

机译:一种针对病理MR脑图像自动分割的关节强度和边缘幅度多晶阈值算法

获取原文
获取原文并翻译 | 示例

摘要

Multilevel thresholding is one of the most popular image segmentation techniques due to its simplicity and accuracy. Most of the thresholding approaches use either the histogram of an image or information from the grey-level co-occurrence matrix (GLCM) to compute the threshold. The medical images like MRI usually have vague boundaries and poor contrast. So, segmenting these images using solely histogram or texture attributes of GLCM proves to be insufficient. This paper proposes a novel multilevel thresholding approach for automatic segmentation of tumour lesions from magnetic resonance images. The proposed technique exploits both intensity and edge magnitude information present in image histogram and GLCM to compute the multiple thresholds. Subsequently, using both attributes, a hybrid fitness function has been formulated which can capture the variations in intensity and the edge magnitude present in different tumour groups effectively. Mutation-based particle swarm optimization (MPSO) technique has been used to optimize the fitness function so as to mitigate the problem of high computational complexity existing in the exhaustive search methods. Moreover, MPSO has better exploration capabilities as compared to conventional particle swarm optimization. The performance of the devised technique has been evaluated and compared with two other intensity- and texture-based approaches using three different measures: Jaccard, Dice and misclassification error. To compute these quantitative metrics, experiments were conducted on a series of images, including low-grade glioma tumour volumes taken from brain tumour image segmentation benchmark 2012 and 2015 data sets and real clinical tumour images. Experimental results show that the proposed approach outperforms the other competing algorithms by achieving an average value equal to 0.752, 0.854, 0.0052; 0.648, 0.762, 0.0177; 0.710, 0.813, 0.0148 and 0.886, 0.937, 0.0037 for four different data sets.
机译:多级阈值化是由于其简单性和准确性,是最流行的图像分段技术之一。大多数阈值处理方法使用图像的直方图或来自灰度级共发生矩阵(GLCM)的直方图来计算阈值。像MRI这样的医学图像通常具有模糊的界限和较差的对比度。因此,使用Glcm的单独直方图或纹理属性分割这些图像被证明不足。本文提出了一种新的多级阈值阈值阈值方法,用于磁共振图像自动分割肿瘤病变的自动分割。所提出的技术利用图像直方图和GLCM中存在的强度和边缘幅度信息来计算多个阈值。随后,使用两个属性,已经制定了混合体功能,其可以有效地捕获不同肿瘤组中存在的强度和边缘幅度的变化。基于突变的粒子群优化(MPSO)技术已被用于优化适合函数,以便减轻穷举搜索方法中存在的高计算复杂性的问题。此外,与传统粒子群优化相比,MPSO具有更好的探索能力。已经评估了设计技术的性能,并与使用三种不同措施的其他基于强度和纹理的方法进行了评估,并将其进行比较:Jaccard,骰子和错误分类错误。为了计算这些定量度量,在一系列图像上进行实验,包括从脑肿瘤图像分割基准测试2012和2015年数据集和真实临床肿瘤图像中取出的低级胶质瘤肿瘤体积。实验结果表明,该方法通过实现等于0.752,0.854,00052的平均值来实现其他竞争算法; 0.648,0.762,0.0177; 0.710,0.813,0.0148和0.886,0.937,0.0037,用于四个不同的数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号