...
首页> 外文期刊>Journal of Electronic Materials >Secondary Electron Intensity Contrast Imaging and Friction Properties of Micromechanically Cleaved Graphene Layers on Insulating Substrates
【24h】

Secondary Electron Intensity Contrast Imaging and Friction Properties of Micromechanically Cleaved Graphene Layers on Insulating Substrates

机译:绝缘基板上微机械切割的石墨烯层的二次电子强度对比成像和摩擦特性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We report on the surface properties (friction and work function) of micromechanically cleaved graphene layers placed on thermally gown thick insulating (similar to 295 nm of SiO2) films on commercial Si (001) substrates. By employing atomic force microscopy (AFM) and scanning electron microscopy with varying primary-electron acceleration voltage (V (acc)) in secondary electron imaging (SEI) mode, we determined the coefficient of friction (mu) and electronic work function (I broken vertical bar), respectively, as functions of the number of graphene layers (n). The friction coefficient was deduced from line scans of friction maps obtained simultaneously while measuring AFM topography. The findings show that supported mono-, bi-, and trilayer graphene all yield similar results (similar to 0.03), in contrast to multilayer (similar to 0.027) and thicker graphite (similar to 0.015) flakes. From the SEI contrast variation, we obtained a reproducible discrete distribution of SE intensity stemming from atomically thick graphene layers on a thick insulating substrate. We were able to determine the number of graphene layers (i.e., n) from the SE intensity contrast or the SE intensity itself. Moreover, we found a distinct linear relationship between the relative SE intensity from the graphene layers and their number, provided a relatively lower V (acc) was used. The different contrast in SEI micrographs at lower V (acc) is attributed to the fact that the generation of secondary electrons emitted from the graphene was affected by the different work functions corresponding to different n values (or thickness contrast, C). This simple and facile method is superior to the conventional optical method in its capability to characterize graphene over sub-1-mu m(2) areas on various insulating substrates. These results are supplemented by optical microscopy, high-resolution transmission electron microscopy, and Raman spectroscopy and Raman mapping that yield the structural quality (or disorder) of the graphene layers, albeit semiquantitatively.
机译:我们报告了微机械裂解的石墨烯层的表面性质(摩擦和功函数),该石墨烯层置于商业化的硅(001)衬底上的热袍厚绝缘层(类似于295 nm的SiO2)薄膜上。通过在二次电子成像(SEI)模式下采用原子力显微镜(AFM)和具有变化的一次电子加速电压(V(acc))的扫描电子显微镜,我们确定了摩擦系数(mu)和电子功函数(I垂直条)分别作为石墨烯层数(n)的函数。摩擦系数是从同时测量AFM形貌时获得的摩擦图的线扫描推导出的。研究结果表明,与多层(类似于0.027)和较厚的石墨(类似于0.015)薄片相比,负载的单层,双层和三层石墨烯均产生相似的结果(相似于0.03)。从SEI对比度变化中,我们获得了SE强度的可重现的离散分布,其分布是由厚绝缘基板上的原子厚石墨烯层引起的。我们能够从SE强度对比或SE强度本身确定石墨烯层的数量(即n)。此外,如果使用相对较低的V(acc),我们发现石墨烯层的相对SE强度与其数量之间存在明显的线性关系。 SEI显微照片在较低V(acc)时的不同对比度归因于以下事实:从石墨烯发出的二次电子的生成受到对应于不同n值(或厚度对比度C)的不同功函数的影响。这种简单且简便的方法在表征各种绝缘基板上低于1微米(2)区域的石墨烯的能力方面优于常规光学方法。这些结果通过光学显微镜,高分辨率透射电子显微镜,拉曼光谱和拉曼作图得到了补充,尽管半定量地得出了石墨烯层的结构质量(或无序度)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号