首页> 外文期刊>The Annals of Statistics: An Official Journal of the Institute of Mathematical Statistics >Current status and right-censored data structures when observing a marker at the censoring time
【24h】

Current status and right-censored data structures when observing a marker at the censoring time

机译:在检查时观察标记的当前状态和右检查的数据结构

获取原文
获取原文并翻译 | 示例

摘要

We study nonparametric estimation with two types of data structures. In the first data structure n i.i.d. copies of (C, N(C)) are observed, where N is a finite state counting process jumping at time-variables of interest and C a random monitoring time. In the second data structure n i.i.d. copies of (C boolean AND T, I(T less than or equal to C), N (C boolean AND T)) are observed, where N is a counting process with a final jump at time T (e.g., death). This data structure includes observing right-censored data on T and a marker variable at the censoring time. In these data structures, easy to compute estimators, namely (weighted)pool-adjacent-violator estimators for the marginal distributions of the unobservable time variables, and the Kaplan-Meier estimator for the time T till the final observable event, are available. These estimators ignore seemingly important information in the data. In this paper we prove that, at many continuous data generating distributions the ad hoc estimators yield asymptotically efficient estimators of rootn-estimable parameters. [References: 18]
机译:我们研究两种类型的数据结构的非参数估计。在第一数据结构中,观察到(C,N(C))的副本,其中N是在感兴趣的时间变量处跳跃的有限状态计数过程,C是随机监视时间。在第二数据结构中,观察到(C布尔AND T,I(T小于或等于C),N(C布尔AND T))的副本,其中N是一个计数过程,最终在时间T处跳跃(例如死亡)。该数据结构包括在检查时观察有关T的右检查数据和标记变量。在这些数据结构中,可以使用易于计算的估算器,即用于不可观测时间变量的边际分布的(加权)池-相邻-违反者估算器,以及直到最终可观测事件的时间T的Kaplan-Meier估算器。这些估算器忽略了数据中看似重要的信息。在本文中,我们证明了,在许多连续的数据生成分布中,临时估计量产生了rootn可估计参数的渐近有效估计量。 [参考:18]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号