首页> 外文期刊>Proteins: Structure, Function, and Genetics >Roles of conserved basic amino acid residues and activation mechanism of the hyperthermophilic aspartate racemase at high temperature.
【24h】

Roles of conserved basic amino acid residues and activation mechanism of the hyperthermophilic aspartate racemase at high temperature.

机译:保守的碱性氨基酸残基的作用和高温嗜热天冬氨酸消旋酶在高温下的激活机制。

获取原文
获取原文并翻译 | 示例
           

摘要

X-ray crystallography has revealed two similar alpha/beta domains of the aspartate racemase from the hyperthermophilic archaeon, Pyrococcus horikoshii OT3. The active site is located in the cleft between the two domains where two cysteine residues face each other. This arrangement allows the substrate to enter the cleft and enables the two cysteine residues to act synergistically. However, the distance between their thiolates was estimated to be 9.6 angstroms, which is beyond the distance for cooperative action of them. We examined the molecular mechanism for the racemization reaction of this hyperthermophilic aspartate racemase by mutational analyses and molecular dynamics simulations. The mutational analyses revealed that Arg48 and Lys164 were essential for catalysis in addition to the putative catalytic cysteine residues. The molecular dynamics simulations revealed that the distance between the two active gamma-sulfur atoms of cysteine residues oscillate to periodically become shorter than the predicted cooperative distance at high temperature. In addition, the conformation of Tyr160, which is located at the entrance of the cleft and inhibits the entry of a substrate, changes periodically to open the entrance at 375 K. The opening of the gate is likely to be induced by the motion of the adjacent amino acid, Lys164. The entrance of an aspartate molecule was observed by molecular dynamics (MD) simulations driven by the force of the electrostatic interaction with Arg48, Lys164, and also Asp47. These results provide insights into the roles of amino acid residues at the catalytic site and also the activation mechanism of a hyperthermophilic aspartate racemase at high temperature.
机译:X射线晶体学揭示了来自超嗜热古菌Pyrococcus horikoshii OT3的天冬氨酸消旋酶的两个相似的α/β结构域。活性位点位于两个半胱氨酸残基彼此面对的两个结构域之间的缝隙中。这种布置允许底物进入裂缝,并使两个半胱氨酸残基协同作用。然而,它们的硫醇盐之间的距离估计为9.6埃,这超出了它们协同作用的距离。通过突变分析和分子动力学模拟,我们研究了该高嗜热天门冬氨酸消旋酶消旋反应的分子机理。突变分析显示,除了推定的催化半胱氨酸残基外,Arg48和Lys164对于催化也是必不可少的。分子动力学模拟显示,半胱氨酸残基的两个活性γ-硫原子之间的距离周期性地振荡,变得比高温下的预测协作距离短。此外,位于裂缝入口处的Tyr160的构型会阻止基质的进入,它会定期变化以在375 K处打开入口。门的打开很可能是由于门的运动引起的。相邻氨基酸Lys164。天冬氨酸分子的进入是通过分子动力学(MD)模拟观察到的,该分子动力学是由与Arg48,Lys164和Asp47进行静电相互作用的力驱动的。这些结果提供了对氨基酸残基在催化位点上的作用以及高温下的天冬氨酸消旋消旋酶在高温下的激活机制的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号