凸函数、凸集理论属于《中国图书分类法》中的六级类目,该分类相关的期刊文献有673篇,会议文献有28篇,学位文献有237篇等,凸函数、凸集理论的主要作者有时统业、宋振云、张庆祥,凸函数、凸集理论的主要机构有重庆师范大学、内蒙古民族大学、湖北职业技术学院等。
统计的文献类型来源于 期刊论文、 学位论文、 会议论文
1.[期刊]
s-凸函数Hermite-Hadamard-Fejér型积分不等式
摘要: 研究了s-凸函数的Hermite-Hadamard-Fejér型积分不等式,利用s-凸函数的基本性质推出新的关于s-凸函数Hermite-Hadamard-F...
2.[期刊]
摘要: 研究了s-对数凸函数及相关的Hermite-Hadamard型不等式。首先,完整证明了一维区间上s-对数凸函数的Hermite-Hadamard型不等式;其次...
3.[期刊]
摘要: 利用Minkowski泛函,讨论实Banach空间中对称凸区域的一致性。证明在维数大于或等于2的实Banach空间中的有界对称凸区域及其补集都是一致域。另外,...
4.[期刊]
摘要: 在广义单调性方面做进一步的推广,并建立函数的广义凸性与其梯度向量的广义单调性之间的等价关系.首先,建立F单调映射、F伪单调映射和F拟单调映射概念.其次,利用可...
5.[期刊]
摘要: 研究了D-η-E-半预不变凸映射和D-η-E-半预不变真拟凸映射的一些性质.首先,讨论了D-η-E-半预不变凸与D-η-E-严格半预不变真拟凸、D-η-E-半...
6.[期刊]
摘要: 针对凸度量空间中的抽象凸结构,提出了3种新广义W-凸函数,以及利用中点W-凸性研究了凸度量空间中广义凸性的方法.首先,将线性空间中基于标准凸结构的3种广义凸函...
7.[期刊]
摘要: 基于已有结论的基础上,在更弱条件下研究了严格凸函数与半严格凸函数的几个性质,对于不成立的结论,通过反例给予了详细的分析.
8.[期刊]
摘要: 首先,研究了回收函数的性质,得到了线性条件下回收函数满足正齐次性和次可加性;其次,通过举例说明若函数不具备线性条件,则回收函数不一定满足正齐次性和次可加性;最...
9.[期刊]
摘要: 该文考虑两个经典监督学习问题(即最小二乘和logistic回归)的随机逼近.在损失函数假设非强凸性基础上,减弱了梯度的Lipschitz连续条件,提出了两种加...
10.[期刊]
摘要: 研究在较弱条件下严格拟凸函数的判别准则.举例论证文中研究条件比常用条件更弱;证明在文中条件下,如果f是下半连续或拟凸函数或凸函数或半严格拟凸函数,则f为严格拟...
11.[期刊]
摘要: 对一般常宽多边形的构造,文章提出一类由圆弧构成的平面图形的作图法,证明这类图形在闭合条件下具有常宽性质,利用线性不等式组求出闭合条件下的全体可行点.通过构造出...
12.[期刊]
摘要: 该文首先定义了一类平面曲线"杠杆轮"与它的臂函数,并利用臂函数给出杠杆轮的参数表示.其次,证明了杠杆轮是平面常宽曲线的一种等价刻画.最后,表明Reuleaux...
13.[期刊]
摘要: 对一般常宽多边形的构造,文章提出一类由圆弧构成的平面图形的作图法,证明这类图形在闭合条件下具有常宽性质,利用线性不等式组求出闭合条件下的全体可行点.通过构造出...
14.[期刊]
摘要: 凸函数和严格凸函数是线性规划和非线性规划都要涉及的基本概念,关于凸函数和严格凸函数的一些定理在凸分析以及最优化问题的理论证明中具有重要作用.本文分别利用不等式...
15.[期刊]
关于GA凸函数Hermite-Hadamard型不等式的差值估计
摘要: 分别在f满足m≤xf′(x)-yf′(y)/ln x-ln y≤M、γ≤f(x)-f(y)/ln x-ln y≤Γ和f为GA凸函数的情况下,利用普通的数学分析...
16.[期刊]
(α,β,λ,λ0,h)凸函数的Hermite-Hadamard型不等式
摘要: 从(α,β,λ,λ0,h)凸函数的定义出发,用数学分析的方法建立了(α,β,λ,λ0,h)凸函数的Hermite-Hadamard型不等式.在h可微且满足h(...
17.[期刊]
s-凸函数Herimite-Hadamard-Fejér型积分不等式
摘要: 研究了s-凸函数的Herimite-Hadamard-Fejér型积分不等式,对一些经典的Herimite-Hadamard-Fejér型积分不等式作了推广,...
18.[期刊]
摘要: 利用反三角函数不等式分别证得两个新的Seiffert型反三角平均Carccos(a,b)与Carccot(a,b)是Schur-凹性,Schur-几何凹性及S...
19.[期刊]
摘要: 仿照已有文献建立Hermite-Hadamard型不等式的方法,从h-F凸函数的定义出发,利用条件P1、P2,建立h-F凸函数的Hermite-Hadamar...
20.[期刊]
协同(r,A)-凸函数Hermite-Hadamard型积分不等式
摘要: 引进协同(r,A)-凸函数的概念,并研究协同(r,A)-凸函数的Hermite-Hadamard型积分不等式,得到了若干个结果.
1.[会议]
摘要: 本文提出了凸模糊对策的一种新的分配方式,给出了一个新的解的定义.并且证明了这种新的分配方式满足的性质和定理.
2.[会议]
摘要: 凹函数和拟凹函数的概念及其性质一直是经济学家使用来研究厂商理论和消费者理论的主要数学技术,函数拟凹性也在其中得到许多深刻的研究.但是,在数学上和应用上函数拟凹...
3.[会议]
摘要: 操作风险的判别是研究操作风险的首要问题.本文使用基于粗糙集理论的知识表示和决策分析方法,通过定义粗隶属度,推导出对应的相惟度,对操作风险进行判别.
4.[会议]
摘要: 本文引入了不分明化粗糙集的概念,并在此基础上探讨了给定论域上的不分明化拓扑和模糊关系之间的相互确定关系.
5.[会议]
摘要: 研究了函数的凸性、单调性及相关理论,建立了关于凸函数、Lipschitz函数的两个新的Hadamard型不等式,这些不等式推广了最近文献中的有关结果。
6.[会议]
摘要: 首先给出了风险喜好型和风险厌恶的非线性效用函数的构造,然后给出了两类效用函数的构造方法,最后应用研究了彩民购买彩票问题和考生申报志愿问题.
7.[会议]
摘要: 在局部凸Hausdorff拓扑向量空间中,讨论了向量优化问题的ε-强有效解.首先,定义了集合的ε-强有效点.然后,在广义锥次似凸集值映射下,获得了向量优化问题...
8.[会议]
摘要: 本文针对现行凸壳算法(诸如:串行类的卷包裹凸壳算法、格雷厄姆凸壳算法等,并行类的折半分治凸壳算法、快速凸壳算法等)效率不高的缺点。根据同构化凸壳构造基本定理,...
9.[会议]
摘要: 本文依据同构化凸壳构造基本定理,提出了效率更高的双域单向水平倾角最小化圈绕二维点集凸壳新算法,它实现了对卷包裹凸壳算法、单域单向水平倾角最小化圈绕凸壳算法的改...
10.[会议]
摘要: 本文依据同构化凸壳构造基本定理,提出效率更高的双域双向水平倾角最小化圈绕凸壳新算法。本新算法的同构化特点是:①"初始顶点与双域生成"处理:找出给定二维点集S的...
11.[会议]
摘要: 依据同构化凸壳构造基本定理,概述了二维点集凸壳研究的研究意义,综述了二维点集凸壳研究的国内外研究现状,分析了现行二维点集凸壳研究的国内外研究停滞不前成因,并率...
12.[会议]
摘要: 本文针对所有权认证,设计了一种数字图像的小波域多态、多重水印方案.通过对数字图像DWT系数低、中、高频部分性能的分析,在DWT域低频部分使用直接扩频的方法将扩...
13.[会议]
摘要: 提出了两种基于离散余弦变换(DCT)的人脸识别新方法.这两种方法都采用DCT对人脸图像进行降维和去噪,所不同的是,方法-直接将DCT系数作为特征,并结合支持向...
14.[会议]
摘要: 本文简要地介绍了图像融合技术的产生、发展,然后针对已有的图像融合技术提出了一种新的基于离散小波变换的遥感图像融合算法.该法在图像经小波分解后的高频域内,利用求...
15.[会议]
摘要: 本文从1993年全国高考题的解法入手,探讨了凸凹函数的四个等价的定义.本文包含以下两方面内容:1、从全国高考题看凸函数定义;2、凸凹函数的四个等价定义.
16.[会议]
摘要: 本文将近似水平方法应用到带补偿的两阶段随机规划问题上.通过将两阶段随机规划模型的转化,使转化问题的目标函数和约束条件具备凸性和lipschitz连续性,使之能...
17.[会议]
摘要: 广义分式规划问题是求有限个比率最大值函数的最小值问题,这种规划问题通常是非凸的,因而难以求解.本文考虑一种特殊情况,即比率是二次函数与凹函数之商.利用Fenc...
18.[会议]
摘要: 格子点法是构作均匀设计的一种重要方法.在现有的文献中,格子点法仅局限于单位立方体上的均匀设计构作,而任意凸多面体上的均匀设计在实际生产中有着更广泛的意义.本文...
19.[会议]
摘要: 凸函数有一重要性质,即局部极小必为整体极小.在对凸函数所做的各种推广中,关于局部极小与整体极小的关系问题讨论甚多.本文引进了一种新的广义凸函数,即所谓的弧式严...
20.[会议]
摘要: 本文讨论了一类多目标分式规划问题,其中所包含的函数的是局部Lipschitz和Clarke次可微的.首先在G-(P,ρ)凸的条件下,证明了择一定理.然后,证明...
1.[学位]
摘要: 本文主要讨论无穷维序列空间(l)p(0≤p<1)中,数据和算子均存在噪声情况下的不适定问题A0x=g0的双参数稀疏正则化方法,其中(l)p={x∈l2:∞∑k...
2.[学位]
摘要: 凸函数是数学中广泛使用的概念之一,而与凸函数有关的不等式在数学基础理论和应用中起着非常重要的作用.不等式在各个理学科当中都扮演着非常重要的角色,它能解决很多实...
3.[学位]
广义s-凸函数的Hermite-Hadamard型积分不等式
摘要:
凸函数理论在现代数学及其它学科中有着广泛的应用,近几十年来出现了许多广义凸函数类型且凸函数理论为研究其他领域的强有力的工具,起着重要的作用.
不等式...
4.[学位]
多项式序列的单峰型性质和q-Stieltjes moment性质
摘要: 单峰型问题是组合数学中最基本的研究内容之一,包括单峰性,对数凸(凹)性,q-对数凹性,Totally Positive(简写TP)性等。本文将讨论多项式的单峰...
5.[学位]
摘要: 组合序列具有很多重要的性质,例如对数凸性,对数凹性,Polya frequence(简称PF)性质,Stieltjes moment性质等。本文将讨论多项式序...
6.[学位]
摘要:
本文主要考虑预不变凸性和半无限多目标优化问题,主要从实值预不变凸性、向量值预不变凸性和非光滑半无限多目标优化问题三个方面展开研究.主要内容如下:
1...
7.[学位]
摘要:
本文主要考虑半预不变凸性的一些刻画,主要从实值半预不变凸性和多元半预不变凸函数类两个方面展开研究.主要内容如下:
1.第一章简要叙述了广义凸性理论的...
8.[学位]
摘要: 对于非光滑优化,又可以称为不可微优化,它是最优化理论与方法的一个重要分支.解决非光滑优化问题的方法有很多种,如次梯度方法、光滑化方法、束方法和UV-分解方法....
9.[学位]
摘要: 束方法是将下降性和稳定性结合在一起产生的一种方法,它的独特之处在于可以利用信息束保留以前获得的迭代信息,这样人们就不会丢掉“最好的”点,从而有助于达到找到问题...
10.[学位]
摘要: 关于球面凸集有多种不同的定义,本论文以纯分析的方法进行研究。我们给出了球面凸集的一个分析形式的定义,探讨了球面凸集的基本性质,并且阐述和证明了一些很难用纯几何...
11.[学位]
摘要: 凸分析是运筹和优化的基础理论,自1911年Minkowski引入凸集概念以来,集合和函数的凸性被广泛应用于各类相关学科中(例如运筹学、最优化理论、数理经济学、...
12.[学位]
摘要: 凸分析在很多学科中扮演着重要的角色,尤其在运筹学和最优化理论上。凸集的概念是Minkowski在1911年给出,自此函数和集合的凸性就在运筹学、最优化理论、数...
13.[学位]
摘要: 设C,D是平面凸多边形,C1,C2,…是C的位似拷贝.若D(C)∪Cn,则称{Cn}可覆盖D.若D(∪)Cn且{Ci}两两内部不交,则称{Cn}可填装到D.如...
14.[学位]
摘要: 设F为Rd中的一个集族,M(C)Rd.若对于任意两个不同点x,y∈M,都存在一个集合F∈F,使得x,y∈F且F(C)M成立,则称集合M为F-凸的.若存在点x∈...
15.[学位]
摘要:
设S(C)En,若对任意的x,y∈S,都有连接两点的闭直线段(xy)(C)S,则称S为凸集.在n维欧氏空间En中,称内部非空的有界闭凸集为凸体.
设...
16.[学位]
摘要: 广义凸性分析在优化理论、控制论、决策论等学科领域都有着广泛的应用.同时,凸集和凸函数作为凸分析的重要载体,在优化理论研究中起到重要的作用.然而现实问题常受制于...
17.[学位]
摘要: C*-代数分类一直是C*-代数研究的重要课题,关于C*-代数的分类已经有大量的结果。C*-代数分类定理的证明主要包括两步:第一步,存在性定理的证明;第二步,唯...