首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >Reducing leakage in a high-performance deep-submicron instructioncache
【24h】

Reducing leakage in a high-performance deep-submicron instructioncache

机译:减少高性能深亚微米指令缓存中的泄漏

获取原文
获取原文并翻译 | 示例

摘要

Deep-submicron CMOS designs maintain high transistor switchingnspeeds by scaling down the supply voltage and proportionately reducingnthe transistor threshold voltage. Lowering the threshold voltagenincreases leakage energy dissipation due to subthreshold leakage currentneven when the transistor is not switching. Estimates suggest a five-foldnincrease in leakage energy in every future generation. In modernnmicroarchitectures, much of the leakage energy is dissipated in largenon-chip cache memory structures with high transistor densities. Whilencache utilization varies both within and across applications, modernncache designs are fixed in size resulting in transistor leakageninefficiencies. This paper explores an integrated architectural andncircuit-level approach to reducing leakage energy in instruction cachesn(i-caches). At the architecture level, we propose the DynamicallynResIzable i-cache (DRI i cache), a novel i-cache design that dynamicallynresizes and adapts to an application's required size. At thencircuit-level, we use gated-Vdd, a novel mechanism thatneffectively turns off the supply voltage to, and eliminates leakage in,nthe SRAM cells in a DRI i-cache's unused sections. Architectural andncircuit-level simulation results indicate that a DRI i-cachensuccessfully and robustly exploits the cache size variability bothnwithin and across applications. Compared to a conventional i-cache usingnan aggressively-scaled threshold voltage a 64 K DRI i-cache reduces onnaverage both the leakage energy-delay product and cache size by 62%,nwith less than 4% impact on execution time. Our results also indicatenthat a wide NMOS dual-Vt gated-Vdd transistor withna charge pump offers the best gating implementation and virtuallyneliminates leakage energy with minimal increase in an SRAM cell readntime area as compared to an i-cache with an aggressively-scalednthreshold voltage
机译:深亚微米CMOS设计通过减小电源电压并按比例降低晶体管阈值电压来保持较高的晶体管开关速度。降低阈值电压会增加由于亚阈值泄漏电流引起的泄漏能量耗散,即使在晶体管不开关时也是如此。估计表明,未来每一代的泄漏能量将增加五倍。在现代微体系结构中,许多泄漏能量在具有高晶体管密度的大型非芯片高速缓存结构中被耗散。虽然应用程序内部和应用程序之间n缓存的利用率各不相同,但现代缓存设计的大小是固定的,从而导致晶体管泄漏效率低下。本文探索了一种集成的架构和电路级方法,以减少指令高速缓存中的泄漏能量。在体系结构级别,我们提出了DynamicallynResIzable i缓存(DRI i缓存),这是一种新颖的i缓存设计,可以动态调整大小并适应应用程序所需的大小。在电路级,我们使用了Gated-Vdd,这是一种新颖的机制,无法有效关闭DRI i高速缓存未使用部分中SRAM单元的电源电压,并消除其中的泄漏。架构级和电路级的仿真结果表明,DRI i高速缓存成功而稳健地利用了应用程序内和跨应用程序的高速缓存大小可变性。与使用主动缩放阈值电压的传统i-cache相比,64 K DRI i-cache将平均泄漏能量延迟乘积和缓存大小减少了62%,而对执行时间的影响不到4%。我们的结果还表明,与具有激进扩展阈值电压的i高速缓存相比,具有电荷泵的宽NMOS双Vt栅极Vdd晶体管可提供最佳的门控实施,并几乎消除了泄漏能量,同时最小化了SRAM单元的读取时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号