首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >Probabilistic Error Modeling for Nano-Domain Logic Circuits
【24h】

Probabilistic Error Modeling for Nano-Domain Logic Circuits

机译:纳米域逻辑电路的概率误差建模

获取原文
获取原文并翻译 | 示例

摘要

In nano-domain logic circuits, errors generated are transient in nature and will arise due to the uncertainty or the unreliability of the computing element itself. This type of errors—which we refer to as dynamic errors—are to be distinguished from traditional faults and radiation related errors. Due to these highly likely dynamic errors, it is more appropriate to model nano-domain computing as probabilistic rather than deterministic. We propose a probabilistic error model based on Bayesian networks to estimate this expected output error probability, given dynamic error probabilities in each device since this estimate is crucial for nano-domain circuit designers to be able to compare and rank designs based on the expected output error. We estimate the overall output error probability by comparing the outputs of a dynamic error-encoded model with an ideal logic model. We prove that this probabilistic framework is a compact and minimal representation of the overall effect of dynamic errors in a circuit. We use both exact and approximate Bayesian inference schemes for propagation of probabilities. The exact inference shows better time performance than the state-of-the art by exploiting conditional independencies exhibited in the underlying probabilistic framework. However, exact inference is worst case NP-hard and can handle only small circuits. Hence, we use two approximate inference schemes for medium size benchmarks. We demonstrate the efficiency and accuracy of these approximate inference schemes by comparing estimated results with logic simulation results. We have performed our experiments on LGSynth''93 and ISCAS''85 benchmark circuits. We explore our probabilistic model to calculate: 1) error sensitivity of individual gates in a circuit; 2) compute overall exact error probabilities for small circuits; 3) compute approximate error probabilities for med-n-nium sized benchmarks using two stochastic sampling schemes; 4) compare and vet design with respect to dynamic errors; 5) characterize the input space for desired output characteristics by utilizing the unique backtracking capability of Bayesian networks (inverse problem); and 6) to apply selective redundancy to highly sensitive nodes for error tolerant designs.
机译:在纳米域逻辑电路中,产生的错误本质上是瞬态的,并且将由于计算元件本身的不确定性或不可靠性而产生。这种类型的错误(我们称为动态错误)应与传统故障和辐射相关的错误区分开。由于这些极可能发生的动态错误,因此将纳米域计算建模为概率模型而非确定性模型更为合适。考虑到每个器件中的动态错误概率,我们提出了一种基于贝叶斯网络的概率误差模型来估计此预期输出错误概率,因为此估计对于纳米域电路设计人员能够基于预期输出误差进行比较和排序设计至关重要。我们通过将动态错误编码模型的输出与理想逻辑模型的输出进行比较,来估计总体输出错误概率。我们证明了这种概率框架是电路中动态误差的整体影响的紧凑且最小的表示。我们使用精确和近似贝叶斯推理方案来传播概率。通过利用底层概率框架中展现的条件独立性,精确推断显示出比现有技术更好的时间性能。但是,精确推论是最坏情况的NP-hard,只能处理小电路。因此,对于中等规模的基准,我们使用两种近似推理方案。通过将估计结果与逻辑仿真结果进行比较,我们证明了这些近似推理方案的效率和准确性。我们已经在LGSynth''93和ISCAS''85基准电路上进行了实验。我们探索概率模型来计算:1)电路中各个门的误差敏感性; 2)计算小型电路的整体精确错误概率; 3)使用两种随机抽样方案计算中号基准的近似误差概率; 4)比较和审查关于动态误差的设计; 5)通过利用贝叶斯网络独特的回溯能力(逆问题)来表征所需输出特性的输入空间; 6)将选择性冗余应用于高度敏感的节点,以实现容错设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号