首页> 外文期刊>Solid-State Electronics >Parasitic memory effects in shallow-trench-isolated nanocrystal memory devices
【24h】

Parasitic memory effects in shallow-trench-isolated nanocrystal memory devices

机译:浅沟槽隔离纳米晶体存储器件中的寄生存储效应

获取原文
获取原文并翻译 | 示例

摘要

This paper examines the influence of channel edge effects on the memory performance of shallow-trench-isolated Si-nanocrystal single-MOSFET memory cells. The devices were fabricated in a manufacturing environment using a process flow and design rules based on a 0.15 μm Flash-EEPROM technology. The Si-nanocrystals were generated in the gate oxide by low-energy (1 keV) ion-beam-synthesis. For 10 x 10 μm~2 and 0.9 x 0.6 μm~2 (W x L) devices, parasitic transistors formed at the channel edges lead to a "subthreshold hump" in the transfer characteristics. Beyond this current hump, the device transfer characteristics correspond to that of the intrinsic transistor formed in the central part of the channel. Memory testing reveals that the parasitic transistors can be programmed or erased but exhibit memory characteristics significantly different than that of the intrinsic transistor. Hence, the extracted memory windows strongly depend on the source-drain current used for threshold-voltage evaluation when applying the constant current method. In addition to the latter method, the more accurate transconductance change method is herein applied to describe the memory behavior of the intrinsic and parasitic transistors in a more comprehensive way. Finally, while no "subthreshold hump" appears in the transfer characteristics of 0.16 x 0.3 μm~2 transistors, it is shown that the parasitic transistors remain active and their operation dominates the memory behavior of the devices. As emphasized herein the parasitic transistors affect drastically the memory performance of the intended devices and this detrimental effect could constitute a technological issue towards the integration of nanocrystal floating-gate in conventional memory architecture.
机译:本文研究了沟道边缘效应对浅沟槽隔离的Si-纳米晶体单MOSFET存储单元的存储性能的影响。这些器件是在制造环境中使用基于0.15μmFlash-EEPROM技术的工艺流程和设计规则制造的。通过低能(1 keV)离子束合成在栅氧化层中生成了Si纳米晶体。对于10 x 10μm〜2和0.9 x 0.6μm〜2(W x L)器件,在沟道边缘形成的寄生晶体管会导致传输特性出现“亚阈值驼峰”。除了这个电流峰,器件的传输特性与形成在沟道中心部分的本征晶体管的特性相对应。存储器测试表明,可以对寄生晶体管进行编程或擦除,但显示出的存储特性与本征晶体管明显不同。因此,在采用恒流方法时,提取的存储器窗口在很大程度上取决于用于阈值电压评估的源极-漏极电流。除了后一种方法之外,更精确的跨导改变方法在此适用于以更全面的方式描述本征和寄生晶体管的存储行为。最后,虽然在0.16 x 0.3μm〜2晶体管的传输特性中没有出现“亚阈值驼峰”,但表明寄生晶体管保持活动状态,并且其操作支配了器件的存储行为。如本文所强调的,寄生晶体管极大地影响了预期器件的存储性能,并且这种有害影响可能构成了将纳米晶体浮栅集成到常规存储架构中的技术问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号