首页> 外文学位 >Electron Transport in Silicon Nanocrystal Devices: From Memory Applications to Silicon Photonics.
【24h】

Electron Transport in Silicon Nanocrystal Devices: From Memory Applications to Silicon Photonics.

机译:硅纳米晶体器件中的电子传输:从存储应用到硅光子学。

获取原文
获取原文并翻译 | 示例

摘要

The push to integrate the realms of microelectronics and photonics on the silicon platform is currently lacking an efficient, electrically pumped silicon light source. One promising material system for photonics on the silicon platform is erbium-doped silicon nanoclusters (Er:Si-nc), which uses silicon nanoclusters to sensitize erbium ions in a SiO2 matrix. This medium can be pumped electrically, and this thesis focuses primarily on the electrical properties of Er:Si-nc films and their possible development as a silicon light source in the erbium emission band around 1.5 micrometers. Silicon nanocrystals can also be used as the floating gate in a flash memory device, and work is also presented examining charge transport in novel systems for flash memory applications.;To explore silicon nanocrystals as a potential replacement for metallic floating gates in flash memory, the charging dynamics in silicon nanocrystal films are first studied using UHV-AFM. This approach uses a non-contact AFM tip to locally charge a layer of nanocrystals. Subsequent imaging allows the injected charge to be observed in real time as it moves through the layer. Simulation of this interaction allows the quantication of the charge in the layer, where we find that each nanocrystal is only singly charged after injection, while holes are retained in the film for hours.;Work towards developing a dielectric stack with a voltage-tunable barrier is presented, with applications for flash memory and hyperspectral imaging. For hyperspectral imaging applications, film stacks containing various dielectrics are studied using I-V, TEM, and internal photoemission, with barrier tunability demonstrated in the Sc2O3/SiO2 system.;To study Er:Si-nc as a potential lasing medium for silicon photonics, a theoretical approach is presented where Er:Si-nc is the gain medium in a silicon slot waveguide. By accounting for the local density of optical states effect on the emitters, and carrier absorption due to electrical pumping, it is shown that a pulsed excitation method is needed to achieve gain in this system. A gain of up to 2 db/cm is predicted for an electrically pumped gain medium 50 nm thick. To test these predictions Er:Si-nc LEDs were fabricated and studied. Reactive oxygen sputtering is found to produce more robust films, and the electrical excitation cross section found is two orders of magnitude larger than the optical cross section. The fabricated devices exhibited low lifetimes and low current densities which prevent observation of gain, and the modeling is used to predict how the films must be improved to achieve gain and lasing in this system.
机译:目前,将微电子和光子学领域整合到硅平台上的努力缺乏有效的电泵浦硅光源。硅平台上用于光子学的一种有前途的材料系统是掺ped的硅纳米团簇(Er:Si-nc),该体系使用硅纳米团簇来激发SiO2基质中的离子。这种介质可以电泵送,因此本文主要关注Er:Si-nc膜的电性能及其在1.5微米左右的emission发射带中作为硅光源的可能发展。硅纳米晶体还可以用作闪存器件中的浮栅,并且还介绍了在闪存系统的新型系统中研究电荷传输的工作。为了探索硅纳米晶体作为闪存中金属浮栅的潜在替代者,首先使用UHV-AFM研究了硅纳米晶体薄膜中的电荷动力学。这种方法使用非接触式AFM尖端对纳米晶体层进行局部充电。随后的成像使注入的电荷在穿过层中时可以实时观察到。这种相互作用的模拟可以量化层中的电荷,在该层中,我们发现每个纳米晶体仅在注入后单电荷,而空穴在薄膜中保留了数小时。努力开发具有电压可调势垒的电介质堆叠本文介绍了闪存和高光谱成像的应用。对于高光谱成像应用,使用IV,TEM和内部光发射研究了包含各种电介质的薄膜叠层,并在Sc2O3 / SiO2系统中证明了势垒可调谐性;为了研究Er:Si-nc作为硅光子的潜在激光介质,提出了一种理论方法,其中Er:Si-nc是硅缝隙波导中的增益介质。通过考虑光学状态对发射器的局部密度以及由于电泵激引起的载流子吸收,表明需要脉冲激励方法来实现该系统的增益。对于50 nm厚的电泵增益介质,预计将达到2 db / cm的增益。为了检验这些预测,制造并研究了Er:Si-nc LED。发现活性氧溅射产生了更坚固的膜,并且发现的电激发横截面比光学横截面大两个数量级。所制造的器件表现出低寿命和低电流密度,这妨碍了增益的观察,并且该模型用于预测在该系统中必须如何改善膜以实现增益和激光发射。

著录项

  • 作者

    Miller, Gerald M.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Nanotechnology.;Physics Optics.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 124 p.
  • 总页数 124
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号