首页> 外文学位 >Silicon nanocrystal devices for electronics and photonics.
【24h】

Silicon nanocrystal devices for electronics and photonics.

机译:电子和光子学的硅纳米晶体器件。

获取原文
获取原文并翻译 | 示例

摘要

This work explores the application of two different types of nanocrystalline silicon (nc-Si) structures to meet the challenges facing CMOS VLSI. In the first part, the fabrication and properties of nc-Si and Ge embedded in SiO 2 and Si3N4 is investigated for application to an optical interconnect layer over CMOS devices. The main focus is on co-sputtered layers from Si and SiO2 targets although implanted and CVD matrixes of Si3N4 are also presented. The characterization tools include: photoluminescence (PL), XPS, spectroscopic ellipsometry, TEM and ESR spectroscopy. Dangling bond termination by either forming gas annealing or high pressure water vapor annealing (HWA) is critical to obtaining high efficiency PL emission. This study reveals the PL enhancement mechanism of nc-Si by HWA. The dependence of the PL intensity and the peak shift on the different nanocrystal materials studied suggests the differences in the emission mechanisms. The band-to-band direct recombination dominates in nc-Si in SiO 2, while emissive states are the PL source for the Si3N 4 matrices. The results indicate that these materials should be useful for electroluminescence emission devices in the 700-800 Mn wavelength range for high speed optical interconnect applications in CMOS.; In the second part, a novel device layer transfer technology based on nanocrystalline porous silicon is proposed. This technology is applicable to 3D device layering and to optical interconnect layers on the existing device layers. A bulk wafer is anodically etched to make porous silicon, followed by silicon epitaxial growth on the porous silicon. Conventional CMOS devices are fabricated on this epitaxial layer. In the final step, the device layer is transferred to a plastic substrate with grinding as the thinning process. We found that the CMOS characteristics with a porous silicon underlayer are comparable with those without the porous silicon. We also demonstrate that no degradation of the CMOS electrical characteristics occurs during transfer, suggesting that the porous silicon transfer is suitable for fabricating 3D-ICs and flexible ICs and for enhanced die cooling for high performance processors.
机译:这项工作探索了两种不同类型的纳米晶体硅(nc-Si)结构的应用,以应对CMOS VLSI面临的挑战。在第一部分中,研究了嵌入SiO 2和Si3N4中的nc-Si和Ge的制备和性能,以应用于CMOS器件上的光学互连层。尽管还介绍了Si3N4的注入基质和CVD基质,但主要重点是从Si和SiO2靶材共溅射层。表征工具包括:光致发光(PL),XPS,椭圆偏振光谱,TEM和ESR光谱。通过形成气体退火或高压水蒸气退火(HWA)形成的悬空键终止对于获得高效PL发射至关重要。这项研究揭示了HWA对nc-Si的PL增强机理。 PL强度和峰位移对所研究的不同纳米晶体材料的依赖性表明了发射机理的差异。在SiO 2中的nc-Si中,带间直接重组占主导地位,而发射态是Si3N 4矩阵的PL源。结果表明,这些材料对于在CMOS中高速光学互连应用的700-800 Mn波长范围内的电致发光器件来说应该是有用的。在第二部分中,提出了一种基于纳米晶多孔硅的新型器件层转移技术。该技术适用于3D设备分层以及现有设备层上的光学互连层。阳极蚀刻体晶片以制造多孔硅,然后在多孔硅上外延生长硅。在该外延层上制造常规的CMOS器件。在最后一步中,将器件层通过打磨转移到塑料基板上,作为减薄工艺。我们发现具有多孔硅底层的CMOS特性与没有多孔硅底层的CMOS特性相当。我们还证明了在传输过程中不会发生CMOS电特性下降的现象,这表明多孔硅传输适合于制造3D-IC和柔性IC,以及用于增强高性能处理器的芯片冷却。

著录项

  • 作者

    Sanda, Hiroyuki.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Engineering Electronics and Electrical.; Physics Optics.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 125 p.
  • 总页数 125
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;光学;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号