首页> 外文期刊>Russian Journal of Numerical Analysis and Mathematical Modelling >Boundary least squares method with three-dimensional harmonic basis of higher order for solving linear div-curl systems with Dirichlet conditions
【24h】

Boundary least squares method with three-dimensional harmonic basis of higher order for solving linear div-curl systems with Dirichlet conditions

机译:利用Dirichlet条件求解线性Div-Curl系统的三维谐波基础的边界最小二乘法

获取原文
获取原文并翻译 | 示例

摘要

Solving linear divergence-curl system with Dirichlet conditions is reduced to finding an unknown vector function in the space of piecewise-polynomial gradients of harmonic functions. In this approach one can use the boundary least squares method with a harmonic basis of a high order of approximation formulated by the authors previously. The justification of this method is given. The properties of the bilinear form and approximating properties of the basis are investigated. Convergence of approximate solutions is proved. A numerical example with estimates of experimental orders of convergence in V-h(p)-norm for different parameters h, p (p = 10) is presented. The method does not require specification of penalty weight function.
机译:通过Dirichlet条件求解线性分歧系统,以在谐波函数的分段 - 多项式梯度的空间中找到未知的向量函数。在这种方法中,可以使用由先前由作者配制的高阶近似的边界最小二乘法。给出了这种方法的理由。研究了基础的双线性形式和近似性质的性质。证明了近似解决方案的收敛。呈现了具有不同参数H的V-H(P)-NOM(P <= 10)的V-H(P)-NORM估计的数值例。该方法不需要规范罚款权重功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号