首页> 外文期刊>Russian Journal of Numerical Analysis and Mathematical Modelling >Boundary least squares method with three-dimensional harmonic basis of higher order for solving linear div-curl systems with Dirichlet conditions
【24h】

Boundary least squares method with three-dimensional harmonic basis of higher order for solving linear div-curl systems with Dirichlet conditions

机译:具有Dirichlet条件的线性div-curl系统的高阶三次谐波基边界最小二乘法

获取原文
获取原文并翻译 | 示例

摘要

Solving linear divergence-curl system with Dirichlet conditions is reduced to finding an unknown vector function in the space of piecewise-polynomial gradients of harmonic functions. In this approach one can use the boundary least squares method with a harmonic basis of a high order of approximation formulated by the authors previously. The justification of this method is given. The properties of the bilinear form and approximating properties of the basis are investigated. Convergence of approximate solutions is proved. A numerical example with estimates of experimental orders of convergence in V-h(p)-norm for different parameters h, p (p = 10) is presented. The method does not require specification of penalty weight function.
机译:将具有Dirichlet条件的线性散度-卷积系统求解简化为在谐波函数的分段多项式梯度空间中找到未知的矢量函数。在这种方法中,可以使用边界最小二乘方法,该方法具有作者先前制定的高阶近似的谐波基础。给出了该方法的理由。研究了双线性形式的性质和基的近似性质。证明了近似解的收敛性。给出了一个数值示例,其中包含针对不同参数h,p(p <= 10)的V-h(p)-范数收敛的实验阶数的估计。该方法不需要规定惩罚权重函数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号