...
首页> 外文期刊>Robotica >Energy-optimal relative timing of stance-leg push-off and swing-leg retraction in walking
【24h】

Energy-optimal relative timing of stance-leg push-off and swing-leg retraction in walking

机译:步行中站姿小腿和摆动小腿的能量最优相对时机

获取原文
获取原文并翻译 | 示例
           

摘要

Swing-leg retraction in walking is the slowing or reversal of the forward rotation of the swing leg at the end of the swing phase prior to ground contact. For retraction, a hip torque is often applied to the swing leg at about the same time as stance-leg push-off. Due to mechanical coupling, the push-off force affects leg swing, and hip torque affects the stance-leg extension. This coupling makes the energetic costs of retraction and push-off depend on their relative timing. Here, we find the energy-optimal relative timing of these actions. We first use a simplified walking model with non-regenerative actuators, a work-based energetic-cost, and impulsive actuations. Depending on whether the late-swing hip torque is retracting or extending (pushing the leg forward), we find that the optimum is obtained by applying the impulsive hip torque either following or prior to the impulsive push-off force, respectively. These trends extend to other bipedal models and to aperiodic gaits, and are independent of step lengths and walking speeds. In one simulation, the cost of a walking step is increased by 17.6% if retraction torque comes before push-off. To consider non-impulsive actuation and the cost of force production, we add a force-squared (F2) term to the work cost. We show that this cost promotes simultaneous push-off force and retracting torque, but does not change the result that any extending torque should come prior to push-off. A high-fidelity optimization of the Cornell Ranger robot is consistent with the swing-retraction trends from the models above.
机译:步行中的回旋腿缩回是在地面接触之前的回旋阶段结束时,减慢或反转了回旋腿的正向旋转。为了缩回,通常在站姿腿下推的同时将髋部扭矩施加到摆腿上。由于机械耦合,下推力会影响腿的摆动,而髋部扭矩会影响站姿-腿的伸展。这种耦合使得收回和下推的能量成本取决于它们的相对时间。在这里,我们找到了这些动作的能量最佳相对定时。我们首先使用带有非再生执行器,基于工作的能量成本和脉冲执行器的简化步行模型。根据后摆髋部扭矩是回缩还是伸展(向前推动腿部),我们发现通过分别在脉冲推力之后或之前施加脉冲髋部扭矩可获得最佳效果。这些趋势扩展到其他两足动物模型和非周期性步态,并且与步长和步行速度无关。在一个模拟中,如果在下推之前产生回缩扭矩,则步行步骤的成本将增加17.6%。为了考虑非脉冲驱动和力生产的成本,我们在工作成本中添加了一个力平方(F2)项。我们表明,此成本可同时推动推力和缩回扭矩,但不会改变推力之前应有任何延伸扭矩的结果。康奈尔游侠机器人的高保真度优化与上述模型的回缩趋势一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号