首页> 外文期刊>Programming and Computer Software >Object Detection in Aerial Navigation using Wavelet Transform and Convolutional Neural Networks: A First Approach
【24h】

Object Detection in Aerial Navigation using Wavelet Transform and Convolutional Neural Networks: A First Approach

机译:使用小波变换和卷积神经网络的空中导航对象检测:第一种方法

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a first approach based on wavelet analysis inside image processing for object detection with a repetitive pattern and binary classification in the image plane, in particular for navigation in simulated environments. To date, it has become common to use algorithms based on convolutional neural networks (CNNs) to process images obtained from the on-board camera of unmanned aerial vehicles (UAVs) in the spatial domain, being useful in detection and classification tasks. CNN architecture can receive images without pre-processing, as input in the training stage. This advantage allows us to extract the characteristic features of the image. Nevertheless, in this work, we argue that characteristics at different frequencies, low and high, also affect the performance of CNN during training. Thus, we propose a CNN architecture complemented by the 2D discrete wavelet transform, which is a feature extraction method. Wavelet analysis allows us to use time-frequency information through a multiresolution analysis. Therefore, we have investigated the combination of multiresolution analysis, via wavelets, in conjunction with CNN architectures, to use the information in the wavelet domain as input to the training stage. The information improves the learning capacity, eliminates the overfitting, and achieves a better efficiency in the detection of a target. Also, our learning model was evaluated in the aerial navigation of a drone.
机译:本文提出了一种基于小波分析的第一方法,其在图像处理中具有重复模式和模拟分类的图像处理,特别是在模拟环境中导航。迄今为止,它已经使用基于卷积神经网络(CNNS)的算法(CNN)来处理从空间域中的无人航空车辆(UAV)的车载摄像机获得的图像,可用于检测和分类任务。 CNN架构可以在没有预处理的情况下接收图像,如训练阶段的输入。该优势允许我们提取图像的特征特征。然而,在这项工作中,我们认为不同频率,低和高的特性也影响了CNN在训练期间的性能。因此,我们提出了由2D离散小波变换互补的CNN架构,这是一种特征提取方法。小波分析允许我们通过多分辨率分析使用时频信息。因此,我们已经研究了多分辨率分析,通过小波与CNN架构的组合,将小波域中的信息作为输入到训练阶段。这些信息改善了学习能力,消除了过度装备,并在检测目标中实现更好的效率。此外,我们的学习模型是在无人机的空中航行中评估的。

著录项

  • 来源
    《Programming and Computer Software》 |2020年第8期|536-547|共12页
  • 作者单位

    Univ Autonoma San Luis Potosi Fac Ciencias IICO Karakorum 1470 Lomas 4a San Luis Potosi 78210 Slp Mexico;

    Univ Autonoma San Luis Potosi Coordinac Acad Reg Altiplano Oeste Salinas Santo Domingo 200 Salinas 78600 Slp Mexico;

    Inst Nacl Astrofis Opt & Electr Comp Sci Dept Luis Enrique Erro 1 Puebla 72840 Mexico;

    Univ Autonoma San Luis Potosi Fac Ciencias Chapultepec 1570 San Luis Potosi 78295 Slp Mexico;

    Univ Autonoma San Luis Potosi Fac Ciencias IICO Karakorum 1470 Lomas 4a San Luis Potosi 78210 Slp Mexico;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号