首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Aerial LaneNet: Lane-Marking Semantic Segmentation in Aerial Imagery Using Wavelet-Enhanced Cost-Sensitive Symmetric Fully Convolutional Neural Networks
【24h】

Aerial LaneNet: Lane-Marking Semantic Segmentation in Aerial Imagery Using Wavelet-Enhanced Cost-Sensitive Symmetric Fully Convolutional Neural Networks

机译:航空LaneNet:使用小波增强的成本敏感对称完全卷积神经网络在航空影像中进行车道标记语义分割

获取原文
获取原文并翻译 | 示例

摘要

The knowledge about the placement and appearance of lane markings is a prerequisite for the creation of maps with high precision, necessary for autonomous driving, infrastructure monitoring, lanewise traffic management, and urban planning. Lane markings are one of the important components of such maps. Lane markings convey the rules of roads to drivers. While these rules are learned by humans, an autonomous driving vehicle should be taught to learn them to localize itself. Therefore, accurate and reliable lane-marking semantic segmentation in the imagery of roads and highways is needed to achieve such goals. We use airborne imagery that can capture a large area in a short period of time by introducing an aerial lane marking data set. In this paper, we propose a symmetric fully convolutional neural network enhanced by wavelet transform in order to automatically carry out lane-marking segmentation in aerial imagery. Due to a heavily unbalanced problem in terms of a number of lane-marking pixels compared with background pixels, we use a customized loss function as well as a new type of data augmentation step. We achieve a high accuracy in pixelwise localization of lane markings compared with the state-of-the-art methods without using the third-party information. In this paper, we introduce the first high-quality data set used within our experiments, which contains a broad range of situations and classes of lane markings representative of today's transportation systems. This data set will be publicly available, and hence, it can be used as the benchmark data set for future algorithms within this domain.
机译:有关车道标记的放置和外观的知识是创建高精度地图的前提,这对于自动驾驶,基础设施监控,车道交通管理和城市规划是必不可少的。车道标记是此类地图的重要组成部分之一。车道标记将道路规则传达给驾驶员。虽然这些规则是人类学习的,但应该教导自动驾驶汽车学习如何定位自身。因此,需要在道路和公路图像中进行准确而可靠的车道标记语义分割,以实现这些目标。我们使用的机载图像可以通过引入空中车道标记数据集来在短时间内捕获大面积区域。在本文中,我们提出了一种通过小波变换增强的对称全卷积神经网络,以便在航空影像中自动进行车道标记分割。由于与背景像素相比在车道标记像素数量上存在严重的不平衡问题,因此我们使用了自定义的损失函数以及新型的数据增强步骤。与不使用第三方信息的最新方法相比,我们在车道标记的像素定位中实现了高精度。在本文中,我们介绍了实验中使用的第一个高质量数据集,其中包含代表当今交通运输系统的各种情况和不同类型的车道标志。该数据集将公开提供,因此可以用作该域中未来算法的基准数据集。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号