首页> 外文期刊>Proceedings of the IEEE >Braindrop: A Mixed-Signal Neuromorphic Architecture With a Dynamical Systems-Based Programming Model
【24h】

Braindrop: A Mixed-Signal Neuromorphic Architecture With a Dynamical Systems-Based Programming Model

机译:Braindrop:具有基于动态系统的编程模型的混合信号神经形态架构

获取原文
获取原文并翻译 | 示例

摘要

Braindrop is the first neuromorphic system designed to be programmed at a high level of abstraction. Previous neuromorphic systems were programmed at the neurosynaptic level and required expert knowledge of the hardware to use. In stark contrast, Braindrop’s computations are specified as coupled nonlinear dynamical systems and synthesized to the hardware by an automated procedure. This procedure not only leverages Braindrop’s fabric of subthreshold analog circuits as dynamic computational primitives but also compensates for their mismatched and temperature-sensitive responses at the network level. Thus, a clean abstraction is presented to the user. Fabricated in a 28-nm FDSOI process, Braindrop integrates 4096 neurons in$0.65~ext {mm}^{2}$. Two innovations—sparse encoding through analog spatial convolution and weighted spike-rate summation though digital accumulative thinning—cut digital traffic drastically, reducing the energy Braindrop consumes per equivalent synaptic operation to 381 fJ for typical network configurations.
机译:Braindrop是第一个设计成可以高度抽象地编程的神经形态系统。先前的神经形态系统是在神经突触级别进行编程的,需要使用硬件的专业知识。与之形成鲜明对比的是,Braindrop的计算被指定为耦合的非线性动力学系统,并通过自动化程序将其综合到硬件中。此过程不仅将Braindrop的亚阈值模拟电路结构用作动态计算基元,而且还可以补偿它们在网络级的不匹配和温度敏感响应。因此,将干净的抽象呈现给用户。 Braindrop采用28纳米FDSOI工艺制造,将4096个神经元集成到 n $ 0.65〜 text {mm} ^ {2} $ n。两项创新(通过模拟空间卷积的稀疏编码和通过数字累积细化的加权峰值速率求和)可大幅减少数字流量,对于典型的网络配置,Braindrop每次等效突触操作所消耗的能量减少至381 fJ。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号