首页> 美国卫生研究院文献>PLoS Clinical Trials >Characterization and Compensation of Network-Level Anomalies in Mixed-Signal Neuromorphic Modeling Platforms
【2h】

Characterization and Compensation of Network-Level Anomalies in Mixed-Signal Neuromorphic Modeling Platforms

机译:混合信号神经形态建模平台中网络级异常的表征和补偿

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Advancing the size and complexity of neural network models leads to an ever increasing demand for computational resources for their simulation. Neuromorphic devices offer a number of advantages over conventional computing architectures, such as high emulation speed or low power consumption, but this usually comes at the price of reduced configurability and precision. In this article, we investigate the consequences of several such factors that are common to neuromorphic devices, more specifically limited hardware resources, limited parameter configurability and parameter variations due to fixed-pattern noise and trial-to-trial variability. Our final aim is to provide an array of methods for coping with such inevitable distortion mechanisms. As a platform for testing our proposed strategies, we use an executable system specification (ESS) of the BrainScaleS neuromorphic system, which has been designed as a universal emulation back-end for neuroscientific modeling. We address the most essential limitations of this device in detail and study their effects on three prototypical benchmark network models within a well-defined, systematic workflow. For each network model, we start by defining quantifiable functionality measures by which we then assess the effects of typical hardware-specific distortion mechanisms, both in idealized software simulations and on the ESS. For those effects that cause unacceptable deviations from the original network dynamics, we suggest generic compensation mechanisms and demonstrate their effectiveness. Both the suggested workflow and the investigated compensation mechanisms are largely back-end independent and do not require additional hardware configurability beyond the one required to emulate the benchmark networks in the first place. We hereby provide a generic methodological environment for configurable neuromorphic devices that are targeted at emulating large-scale, functional neural networks.
机译:不断发展的神经网络模型的规模和复杂性导致对用于其仿真的计算资源的需求不断增长。神经形态设备比传统的计算体系结构具有许多优势,例如高仿真速度或低功耗,但这通常是以降低可配置性和精度为代价的。在本文中,我们研究了神经形态设备常见的几种因素的后果,更具体地讲,有限的硬件资源,有限的参数可配置性以及由于固定模式噪声和试验间的可变性导致的参数变化。我们的最终目标是提供一系列方法来应对这种不可避免的失真机制。作为测试我们提出的策略的平台,我们使用BrainScaleS神经形态系统的可执行系统规范(ESS),该规范已被设计为神经科学建模的通用仿真后端。我们详细解决了该设备的最基本限制,并在一个定义明确的系统工作流程中研究了它们对三种原型基准网络模型的影响。对于每种网络模型,我们首先定义可量化的功能度量,然后通过它们评估理想的软件仿真和ESS中典型的特定于硬件的失真机制的影响。对于那些导致与原始网络动力学产生不可接受的偏差的影响,我们建议使用通用补偿机制并证明其有效性。所建议的工作流程和所研究的补偿机制都在很大程度上是后端独立的,除了最初模拟基准网络所需的硬件可配置性之外,不需要其他硬件可配置性。我们在此提供针对可配置神经形态设备的通用方法环境,这些设备旨在模拟大规模功能神经网络。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号