首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >One Shot Segmentation: Unifying Rigid Detection and Non-Rigid Segmentation Using Elastic Regularization
【24h】

One Shot Segmentation: Unifying Rigid Detection and Non-Rigid Segmentation Using Elastic Regularization

机译:一次拍摄分割:使用弹性正则化统一刚性检测和非刚性分割

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a novel approach for the non-rigid segmentation of deformable objects in image sequences, which is based on one-shot segmentation that unifies rigid detection and non-rigid segmentation using elastic regularization. The domain of application is the segmentation of a visual object that temporally undergoes a rigid transformation (e.g., affine transformation) and a non-rigid transformation (i.e., contour deformation). The majority of segmentation approaches to solve this problem are generally based on two steps that run in sequence: a rigid detection, followed by a non-rigid segmentation. In this paper, we propose a new approach, where both the rigid and non-rigid segmentation are performed in a single shot using a sparse low-dimensional manifold that represents the visual object deformations. Given the multi-modality of these deformations, the manifold partitions the training data into several patches, where each patch provides a segmentation proposal during the inference process. These multiple segmentation proposals are merged using the classification results produced by deep belief networks (DBN) that compute the confidence on each segmentation proposal. Thus, an ensemble of DBN classifiers is used for estimating the final segmentation. Compared to current methods proposed in the field, our proposed approach is advantageous in four aspects: (i) it is a unified framework to produce rigid and non-rigid segmentations; (ii) it uses an ensemble classification process, which can help the segmentation robustness; (iii) it provides a significant reduction in terms of the number of dimensions of the rigid and non-rigid segmentations search spaces, compared to current approaches that divide these two problems; and (iv) this lower dimensionality of the search space can also reduce the need for large annotated training sets to be used for estimating the DBN models. Experiments on the problem of left ventricle endocardial segmentation from ultrasound images, and lip segmentation from frontal facial images using the extended Cohn-Kanade (CK+) database, demonstrate the potential of the methodology through qualitative and quantitative evaluations, and the ability to reduce the search and training complexities without a significant impact on the segmentation accuracy.
机译:本文提出了一种新的图像序列中可变形对象的非刚性分割的新方法,其基于一次性分割,其利用弹性正则化统一刚性检测和非刚性分段。应用领域是视觉对象的分割,其逐时地经历刚性变换(例如,仿射变换)和非刚性变换(即,轮廓变形)。解决此问题的大部分分割方法通常基于依次运行的两个步骤:刚性检测,然后是非刚性分割。在本文中,我们提出了一种新方法,其中刚性和非刚性分割都在单次射击中使用表示视觉物体变形的稀疏低维歧管进行。鉴于这些变形的多种方式,歧管将训练数据分配到几个补丁中,其中每个补丁在推理过程中提供分段提议。这些多个分段建议用深信网络(DBN)产生的分类结果来合并,这对每个分段提案进行了信心。因此,DBN分类器的集合用于估计最终分割。与现场提出的目前的方法相比,我们所提出的方法在四个方面是有利的:(i)它是生产刚性和非刚性分割的统一框架; (ii)它使用集合分类过程,这可以帮助分割鲁棒性; (iii)与当前划分这两个问题的方法相比,它在刚性和非刚性分割搜索空间的尺寸的数量方面提供了显着的减少; (iv)搜索空间的较低维度也可以减少用于估计DBN模型的大型注释训练集的需求。关于超声图像左心室内阴离处分区问题的实验,以及使用扩展Cohn-Kanade(CK +)数据库的前面部图像的唇部分割,通过定性和定量评估来证明方法的潜力,以及减少搜索的能力并且培训复杂性对分割准确性的显着影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号