首页> 外文期刊>Biomedical signal processing and control >Automatic segmentation of facial soft tissue in MRI data based on non-rigid normalization in application to soft tissue thickness measurement
【24h】

Automatic segmentation of facial soft tissue in MRI data based on non-rigid normalization in application to soft tissue thickness measurement

机译:基于非刚性归一化的MRI数据中面部软组织自动分割在软组织厚度测量中的应用

获取原文
获取原文并翻译 | 示例

摘要

For measuring the thickness of soft tissue in magnetic resonance (MRI) images, precise borders between skull and face surfaces should be known. We present an algorithm for segmentation of the human head in T1-weighted MRI images that generates smooth, complete segments of head tissues for further landmarks definition and measurements of the soft tissue thickness of the human head. As a segmentation tool we use an algorithm based on nonlinear normalization of the MRI template to MRI data and application of transform matrix to the head model. The algorithm uses preprocessed subject MRI data and a head model with separate tissue segments. The head model is obtained using a hybrid algorithm and consists of four segments: soft tissue, skull, brain and air. To assess the precision of segmentation, specificity, sensitivity, Dice and Jaccard Similarity Coefficients were computed. The algorithm was tested on MRI images from 10 Caucasian adults from free public database IXI. Specificity of 93% and 98% and sensitivity of 87% and 93% was achieved for soft tissue and brain segment, respectively. Specificity of 67% and 72% and sensitivity of 83% and 62% was achieved for the skull and air segments, respectively. (C) 2019 Elsevier Ltd. All rights reserved.
机译:为了测量磁共振(MRI)图像中软组织的厚度,应该知道头骨和面部表面之间的精确边界。我们提出了一种在T1加权MRI图像中分割人头的算法,该算法可生成平滑,完整的头部组织段,以进一步定义界标和测量人头的软组织厚度。作为分割工具,我们使用基于MRI模板对MRI数据的非线性归一化以及将变换矩阵应用于头部模型的算法。该算法使用预处理的受试者MRI数据和具有单独组织段的头部模型。头部模型是使用混合算法获得的,由四个部分组成:软组织,头骨,大脑和空气。为了评估分割的准确性,计算了特异性,敏感性,Dice和Jaccard相似系数。该算法在来自免费公共数据库IXI的10位高加索成年人的MRI图像上进行了测试。对于软组织和脑段,分别达到93%和98%的特异性以及87%和93%的敏感性。头骨和空气段的特异性分别为67%和72%,敏感性分别为83%和62%。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号