首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >On the Convergence of Learning-Based Iterative Methods for Nonconvex Inverse Problems
【24h】

On the Convergence of Learning-Based Iterative Methods for Nonconvex Inverse Problems

机译:关于非谐波逆问题的基于学习迭代方法的融合

获取原文
获取原文并翻译 | 示例

摘要

Numerous tasks at the core of statistics, learning and vision areas are specific cases of ill-posed inverse problems. Recently, learning-based (e.g., deep) iterative methods have been empirically shown to be useful for these problems. Nevertheless, integrating learnable structures into iterations is still a laborious process, which can only be guided by intuitions or empirical insights. Moreover, there is a lack of rigorous analysis about the convergence behaviors of these reimplemented iterations, and thus the significance of such methods is a little bit vague. This paper moves beyond these limits and proposes Flexible Iterative Modularization Algorithm (FIMA), a generic and provable paradigm for nonconvex inverse problems. Our theoretical analysis reveals that FIMA allows us to generate globally convergent trajectories for learning-based iterative methods. Meanwhile, the devised scheduling policies on flexible modules should also be beneficial for classical numerical methods in the nonconvex scenario. Extensive experiments on real applications verify the superiority of FIMA.
机译:统计数据核心,学习和视觉地区的众多任务是特定造成逆问题的具体情况。最近,基于学习的(例如,深层)迭代方法已经被凭经验证明了对这些问题有用。尽管如此,将学习结构集成到迭代中仍然是一个费力的过程,只能通过直觉或经验洞察引导。此外,关于这些重新实现的迭代的收敛行为缺乏严格的分析,因此这些方法的重要性有点模糊。本文超出了这些限制,提出了灵活的迭代模块化算法(FIMA),一种用于非凸起逆问题的通用和可提供的范例。我们的理论分析表明,FIMA允许我们为基于学习的迭代方法产生全球收敛轨迹。同时,对灵活模块的设计计划调度策略也应该有利于非核解方案中的经典数值方法。关于实际应用的广泛实验验证了FIMA的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号