首页> 外文期刊>Antennas and Propagation, IEEE Transactions on >Learning-Based Fast Iterative Convergence of 3-D MoM via Eigen-AGMRES Method
【24h】

Learning-Based Fast Iterative Convergence of 3-D MoM via Eigen-AGMRES Method

机译:特征-AGMRES方法的基于学习的3-D MoM快速迭代收敛

获取原文
获取原文并翻译 | 示例

摘要

Three-dimensional (3-D) full-wave electromagnetic simulation using method of moments (MoM) under the framework of fast solver algorithms like fast multipole method (FMM) is often bottlenecked by the speed of convergence of the Krylov-subspace-based iterative process. This is primarily because the electric field integral equation (EFIE) matrix, even with cutting-edge preconditioning techniques, often exhibits bad spectral properties arising from frequency or geometry-based ill-conditioning, which render iterative solvers slow to converge or stagnate occasionally. In this communication, a novel technique to expedite the convergence of MoM matrix solution at a specific frequency is proposed, by extracting and applying Eigen-vectors from a previously solved neighboring frequency in an augmented generalized minimum residual (AGMRES) iterative framework. This technique can be applied in unison with any preconditioner. Numerical results demonstrate up to 40% speed-up in convergence using the proposed Eigen-AGMRES method.
机译:在基于快速多极子方法(FMM)的快速求解器算法框架下使用矩量法(MoM)进行的三维(3-D)全波电磁仿真通常会因基于Krylov子空间的迭代收敛速度而成为瓶颈处理。这主要是因为即使采用最先进的预处理技术,电场积分方程(EFIE)矩阵也经常会由于基于频率或几何的不良条件而表现出不良的光谱特性,从而使迭代求解器偶尔收敛或停滞。在此通信中,提出了一种新技术,可通过在增强的广义最小残差(AGMRES)迭代框架中从先前求解的邻近频率中提取和应用特征向量来加快特定频率下MoM矩阵解的收敛。该技术可以与任何预处理器一起使用。数值结果表明,使用拟议的Eigen-AGMRES方法可以使收敛速度提高40%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号