首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Iterative Kernel Principal Component Analysis for Image Modeling
【24h】

Iterative Kernel Principal Component Analysis for Image Modeling

机译:迭代核主成分分析在图像建模中的应用

获取原文
获取原文并翻译 | 示例

摘要

In recent years, Kernel Principal Component Analysis (KPCA) has been suggested for various image processing tasks requiring an image model such as, e.g., denoising or compression. The original form of KPCA, however, can be only applied to strongly restricted image classes due to the limited number of training examples that can be processed. We therefore propose a new iterative method for performing KPCA, the Kernel Hebbian Algorithm which iteratively estimates the Kernel Principal Components with only linear order memory complexity. In our experiments, we compute models for complex image classes such as faces and natural images which require a large number of training examples. The resulting image models are tested in single-frame super-resolution and denoising applications. The KPCA model is not specifically tailored to these tasks; in fact, the same model can be used in super-resolution with variable input resolution, or denoising with unknown noise characteristics. In spite of this, both super-resolution and denoising performance are comparable to existing methods.
机译:近年来,已经提出了用于需要图像模型(例如,降噪或压缩)的各种图像处理任务的内核主成分分析(KPCA)。但是,由于可以处理的训练示例数量有限,KPCA的原始形式只能应用于受严格限制的图像类别。因此,我们提出了一种用于执行KPCA的新的迭代方法,即内核Hebbian算法,该算法以线性顺序内存复杂性来迭代估计内核主成分。在我们的实验中,我们为复杂的图像类别(例如人脸和自然图像)计算模型,这些模型需要大量的训练示例。生成的图像模型在单帧超分辨率和降噪应用中进行了测试。 KPCA模型并非专门针对这些任务而定制;实际上,同一模型可用于具有可变输入分辨率的超分辨率,或具有未知噪声特征的降噪。尽管如此,超分辨率和降噪性能都可以与现有方法媲美。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号