首页> 外文期刊>Neurocomputing >An iterative algorithm for robust kernel principal component analysis
【24h】

An iterative algorithm for robust kernel principal component analysis

机译:鲁棒内核主成分分析的迭代算法

获取原文
获取原文并翻译 | 示例

摘要

We introduce a technique to improve iterative kernel principal component analysis (KPCA) robust to outliers due to undesirable artifacts such as noises, alignment errors, or occlusion. The proposed iterative robust KPCA (rKPCA) links the iterative updating and robust estimation of principal directions. It inherits good properties from these two ideas for reducing the time complexity, space complexity, and the influence of these outliers on estimating the principal directions. In the asymptotic stability analysis, we also show that our iterative rKPCA converges to the weighted kernel principal kernel components from the batch rKPCA. Experimental results are presented to confirm that our iterative rKPCA achieves the robustness as well as time saving better than batch KPCA.
机译:我们引入了一种技术,可改善由于诸如噪声,对齐误差或遮挡等不良工件而导致的异常值鲁棒性的迭代内核主成分分析(KPCA)。所提出的迭代鲁棒性KPCA(rKPCA)将迭代更新和鲁棒主方向估计联系在一起。它从这两个思想中继承了良好的属性,可以减少时间复杂度,空间复杂度以及这些异常值对估计主方向的影响。在渐进稳定性分析中,我们还表明,迭代rKPCA收敛于批处理rKPCA的加权内核主要内核成分。实验结果表明,与批处理KPCA相比,我们的迭代rKPCA具有更好的鲁棒性并节省了时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号