首页> 外文期刊>Journal of computational science >Iterated Robust kernel Fuzzy Principal Component Analysis and application to fault detection
【24h】

Iterated Robust kernel Fuzzy Principal Component Analysis and application to fault detection

机译:迭代鲁棒核模糊主成分分析及其在故障检测中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose an Iterated Robust kernel Fuzzy Principal Component Analysis (IRkFPCA), which is the method that attempts to combine the advantages of the state of art methods and use a more accurate multi-objective function for jointly reducing the modeling errors, optimizing the robustness to outliers and improving the time complexity since it does not require the storage and inversion of the covariance matrix to obtain a memory-efficient approximation of kernel PCA. This proposed technique computes iteratively the principal components, which are used for modeling and fault detection. The detection stage is related to the-evaluation of residuals, also known as detection indices, which are signals that reveal the fault presence. Those indices are obtained from the analysis of the difference between the process measurements and their estimations using the IRkFPCA technique. The performance of the proposed method is illustrated and compared to Iterated kernel Principal Component Analysis (IkPCA) and Iterated Principal Component. Analysis (IPCA) methods through-two simulated examples, one using synthetic data and the other using simulated continuously stirred tank reactor (CSTR) data. The results of the comparative studies reveal that the developed IRkFPCA method provides a better performance in terms of modeling and fault detection accuracies than the Iterated Robust Fuzzy Principal Component Analysis (IRFPCA) and Iterated kernel Principal Component Analysis (IkPCA) methods; while both methods provide improved accuracy over the Iterated Principal Component Analysis (IPCA) method. (C) 2015 Elsevier B.V. All rights reserved.
机译:在本文中,我们提出了一种迭代鲁棒核模糊主成分分析(IRkFPCA),该方法试图结合现有技术方法的优势,并使用更准确的多目标函数共同减少建模误差,由于不需要存储和求反协方差矩阵来获得内核PCA的内存有效近似值,因此优化了对异常值的鲁棒性并提高了时间复杂度。该提议的技术迭代地计算主要成分,该主要成分用于建模和故障检测。检测阶段与残差评估(也称为检测指标)有关,这些残差是揭示故障存在的信号。这些指标是通过使用IRkFPCA技术对过程测量值与其估计值之间的差异进行分析而获得的。说明了所提方法的性能,并将其与迭代内核主成分分析(IkPCA)和迭代主成分进行了比较。分析(IPCA)方法通过两个模拟示例,一个使用合成数据,另一个使用模拟连续搅拌釜反应器(CSTR)数据。比较研究的结果表明,与迭代鲁棒模糊主成分分析(IRFPCA)和迭代核主成分分析(IkPCA)方法相比,改进的IRkFPCA方法在建模和故障检测准确性方面具有更好的性能;而与迭代主成分分析(IPCA)方法相比,这两种方法均提供了更高的准确性。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号