首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Exploring Tiny Images: The Roles of Appearance and Contextual Information for Machine and Human Object Recognition
【24h】

Exploring Tiny Images: The Roles of Appearance and Contextual Information for Machine and Human Object Recognition

机译:探索微小的图像:外观和上下文信息在机器和人类物体识别中的作用

获取原文
获取原文并翻译 | 示例

摘要

Typically, object recognition is performed based solely on the appearance of the object. However, relevant information also exists in the scene surrounding the object. In this paper, we explore the roles that appearance and contextual information play in object recognition. Through machine experiments and human studies, we show that the importance of contextual information varies with the quality of the appearance information, such as an image's resolution. Our machine experiments explicitly model context between object categories through the use of relative location and relative scale, in addition to co-occurrence. With the use of our context model, our algorithm achieves state-of-the-art performance on the MSRC and Corel data sets. We perform recognition tests for machines and human subjects on low and high resolution images, which vary significantly in the amount of appearance information present, using just the object appearance information, the combination of appearance and context, as well as just context without object appearance information (blind recognition). We also explore the impact of the different sources of context (co-occurrence, relative-location, and relative-scale). We find that the importance of different types of contextual information varies significantly across data sets such as MSRC and PASCAL.
机译:通常,仅基于对象的外观来执行对象识别。但是,在对象周围的场景中也存在相关信息。在本文中,我们探讨了外观和上下文信息在对象识别中的作用。通过机器实验和人体研究,我们表明上下文信息的重要性随外观信息的质量(例如图像的分辨率)而变化。除了共现,我们的机器实验还通过使用相对位置和相对比例来显式地对对象类别之间的上下文进行建模。通过使用上下文模型,我们的算法在MSRC和Corel数据集上实现了最新的性能。我们对机器和人体对象进行低分辨率和高分辨率图像的识别测试,仅使用对象外观信息,外观和上下文的组合以及不使用对象外观信息的上下文,就在外观信息的数量上有很大差异(盲目识别)。我们还探讨了上下文的不同来源(共现,相对位置和相对规模)的影响。我们发现,不同类型的上下文信息的重要性在MSRC和PASCAL等数据集之间存在显着差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号