首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >80 Million Tiny Images: A Large Data Set for Nonparametric Object and Scene Recognition
【24h】

80 Million Tiny Images: A Large Data Set for Nonparametric Object and Scene Recognition

机译:8000万个微小图像:用于非参数对象和场景识别的大型数据集

获取原文
获取原文并翻译 | 示例

摘要

With the advent of the Internet, billions of images are now freely available online and constitute a dense sampling of the visual world. Using a variety of non-parametric methods, we explore this world with the aid of a large dataset of 79,302,017 images collected from the Internet. Motivated by psychophysical results showing the remarkable tolerance of the human visual system to degradations in image resolution, the images in the dataset are stored as 32 x 32 color images. Each image is loosely labeled with one of the 75,062 non-abstract nouns in English, as listed in the Wordnet lexical database. Hence the image database gives a comprehensive coverage of all object categories and scenes. The semantic information from Wordnet can be used in conjunction with nearest-neighbor methods to perform object classification over a range of semantic levels minimizing the effects of labeling noise. For certain classes that are particularly prevalent in the dataset, such as people, we are able to demonstrate a recognition performance comparable to class-specific Viola-Jones style detectors.
机译:随着互联网的出现,数十亿张图像现在可以在网上免费获得,并且构成了视觉世界的密集样本。我们使用各种非参数方法,借助从互联网收集的79,302,017张图像的大型数据集,探索了这个世界。受心理物理学结果的激励,该结果显示了人类视觉系统对图像分辨率下降的显着耐受能力,数据集中的图像以32 x 32彩色图像的形式存储。如Wordnet词汇数据库中列出的那样,每个图像都用英语中的75,062个非抽象名词之一松散地标记。因此,图像数据库全面涵盖了所有对象类别和场景。来自Wordnet的语义信息可以与最近邻方法结合使用,以在一系列语义级别上执行对象分类,从而最大程度地减少标记噪声的影响。对于某些在数据集中特别普遍的类,例如人,我们能够证明其识别性能可与类特定的Viola-Jones样式检测器相媲美。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号