首页> 外文期刊>Computer vision and image understanding >The Multimodal Neighborhood Signature for Modeling Object Color Appearance and Applications in Object Recognition and Image Retrieval
【24h】

The Multimodal Neighborhood Signature for Modeling Object Color Appearance and Applications in Object Recognition and Image Retrieval

机译:用于对象颜色外观建模的多峰邻域签名及其在对象识别和图像检索中的应用

获取原文
获取原文并翻译 | 示例

摘要

We propose a general-purpose color-based object model called the Multimodal Neighborhood Signature (MNS) with applications in object recognition and image retrieval. Object modeling is example-based and can cope with many appearance variations due to the image formation/rendering process. The local nature of the color representation facilitates robustness to occlusion and clutter. Unlike other methods, neither segmentation nor edge detection is required and the area of homogeneously colored regions is not used. The algorithm is simple to implement and has low storage requirements. In the reported experiments, eight recognition and two other retrieval methods are reviewed and systematically compared with MNS. Results show good and fast performance under severe scale, viewpoint, occlusion, and background change using a single image for object modeling. Although spatial information was not used and its default internal parameters were used, MNS outperformed most compared methods.
机译:我们提出了一种基于颜色的通用对象模型,称为多模式邻域签名(MNS),并将其应用于对象识别和图像检索中。对象建模是基于示例的,并且可以应对由于图像形成/渲染过程而引起的许多外观变化。颜色表示的局部性质有利于遮挡和混乱的鲁棒性。与其他方法不同,既不需要分割也不需要边缘检测,并且不使用均色区域的面积。该算法实现简单,存储需求低。在报道的实验中,对八种识别方法和另外两种其他检索方法进行了综述,并与MNS进行了系统比较。结果显示,使用单个图像进行对象建模时,在严重缩放,视点,遮挡和背景变化的情况下,性能良好且快速。尽管未使用空间信息,并且使用了其默认内部参数,但MNS的效果优于大多数比较方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号