首页> 外文期刊>Multimedia Tools and Applications >Principal texture direction based block level image reordering and use of color edge features for application of object based image retrieval
【24h】

Principal texture direction based block level image reordering and use of color edge features for application of object based image retrieval

机译:基于主要纹理方向的块级图像重新排序以及颜色边缘特征的使用,以用于基于对象的图像检索

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the authors have presented a novel content-based image retrieval (CBIR) scheme based on the combination of color, shape, and texture visual image features. Initially, the combined features of color and shape are derived from the object region of an image using the proposed color edge map approach. This approach is suitable to extract both the color and shape based features simultaneously from image object region. We have preserved more information associated with the object region and some significant information from the background region for enabling better retrieval efficiency. In the subsequent stage, we have extracted texture features from the preprocessed image. This preprocessed image is obtained after decomposition of an image into non-overlapping blocks followed by reordering all blocks based on their principal texture direction. The notion supports the variation present on image data can be controlled by rearranging each block as per their principal direction and some texture based parameters derived from the preprocessed image. The final feature vector consists of color, shape, and texture-related features in their correct proportions. Proposed CBIR scheme is extensively tested using four coral image databases (i.e. 1,000 color images from 10 different classes, 10,000 color images from 20 different classes, 7,200 images from 100 different classes and 17,125 images from 20 different classes). Experimental results show that the proposed CBIR scheme has better retrieval efficiency in terms of precision and recall than other related schemes.
机译:在本文中,作者提出了一种基于颜色,形状和纹理视觉图像特征的组合的新颖的基于内容的图像检索(CBIR)方案。最初,颜色和形状的组合特征是使用建议的颜色边缘图方法从图像的对象区域中得出的。这种方法适合同时从图像对象区域提取基于颜色和形状的特征。我们保留了更多与对象区域相关的信息以及一些来自背景区域的重要信息,以实现更好的检索效率。在随后的阶段中,我们从预处理的图像中提取了纹理特征。在将图像分解为不重叠的块,然后根据其主要纹理方向对所有块进行重新排序之后,可获得此预处理图像。该概念支持图像数据上存在的变化,可以通过按照每个块的主要方向以及从预处理图像中得出的一些基于纹理的参数来重新排列每个块,来控制这些变化。最终特征向量由颜色,形状和纹理相关的特征按正确的比例组成。建议的CBIR方案已使用四个珊瑚图像数据库进行了广泛测试(即来自10个不同类别的1,000个彩色图像,来自20个不同类别的10,000个彩色图像,来自100个不同类别的7,200个图像和来自20个不同类别的17,125个图像)。实验结果表明,与其他相关方案相比,所提出的CBIR方案在查全率和查全率方面具有更好的检索效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号