首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Combining Multiple Dynamic Models and Deep Learning Architectures for Tracking the Left Ventricle Endocardium in Ultrasound Data
【24h】

Combining Multiple Dynamic Models and Deep Learning Architectures for Tracking the Left Ventricle Endocardium in Ultrasound Data

机译:结合多个动态模型和深度学习架构,以跟踪超声数据中的左心室心包

获取原文
获取原文并翻译 | 示例

摘要

We present a new statistical pattern recognition approach for the problem of left ventricle endocardium tracking in ultrasound data. The problem is formulated as a sequential importance resampling algorithm such that the expected segmentation of the current time step is estimated based on the appearance, shape, and motion models that take into account all previous and current images and previous segmentation contours produced by the method. The new appearance and shape models decouple the affine and nonrigid segmentations of the left ventricle to reduce the running time complexity. The proposed motion model combines the systole and diastole motion patterns and an observation distribution built by a deep neural network. The functionality of our approach is evaluated using a dataset of diseased cases containing 16 sequences and another dataset of normal cases comprised of four sequences, where both sets present long axis views of the left ventricle. Using a training set comprised of diseased and healthy cases, we show that our approach produces more accurate results than current state-of-the-art endocardium tracking methods in two test sequences from healthy subjects. Using three test sequences containing different types of cardiopathies, we show that our method correlates well with interuser statistics produced by four cardiologists.
机译:我们提出了一种新的统计模式识别方法,用于超声数据中左心室心内膜追踪的问题。该问题被公式化为顺序重要性重采样算法,从而基于外观,形状和运动模型来估计当前时间步长的预期分割,该模型考虑了所有先前和当前图像以及该方法生成的先前分割轮廓。新的外观和形状模型使左心室的仿射和非刚性分割解耦,以减少运行时间的复杂性。所提出的运动模型结合了收缩和舒张运动模式以及由深度神经网络建立的观察分布。我们的方法的功能是使用包含16个序列的患病病例数据集和包含四个序列的正常病例的另一个数据集进行评估的,其中两组均显示了左心室的长轴视图。使用由疾病和健康病例组成的训练集,我们表明,在来自健康受试者的两个测试序列中,我们的方法比当前最新的心内膜追踪方法产生更准确的结果。使用包含不同类型心脏疾病的三个测试序列,我们证明了我们的方法与四位心脏病专家产生的用户间统计数据具有很好的相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号