首页> 外文期刊>Image Processing, IEEE Transactions on >The Segmentation of the Left Ventricle of the Heart From Ultrasound Data Using Deep Learning Architectures and Derivative-Based Search Methods
【24h】

The Segmentation of the Left Ventricle of the Heart From Ultrasound Data Using Deep Learning Architectures and Derivative-Based Search Methods

机译:使用深度学习架构和基于导数的搜索方法从超声数据中对心脏左心室进行分割

获取原文
获取原文并翻译 | 示例

摘要

We present a new supervised learning model designed for the automatic segmentation of the left ventricle (LV) of the heart in ultrasound images. We address the following problems inherent to supervised learning models: 1) the need of a large set of training images; 2) robustness to imaging conditions not present in the training data; and 3) complex search process. The innovations of our approach reside in a formulation that decouples the rigid and nonrigid detections, deep learning methods that model the appearance of the LV, and efficient derivative-based search algorithms. The functionality of our approach is evaluated using a data set of diseased cases containing 400 annotated images (from 12 sequences) and another data set of normal cases comprising 80 annotated images (from two sequences), where both sets present long axis views of the LV. Using several error measures to compute the degree of similarity between the manual and automatic segmentations, we show that our method not only has high sensitivity and specificity but also presents variations with respect to a gold standard (computed from the manual annotations of two experts) within interuser variability on a subset of the diseased cases. We also compare the segmentations produced by our approach and by two state-of-the-art LV segmentation models on the data set of normal cases, and the results show that our approach produces segmentations that are comparable to these two approaches using only 20 training images and increasing the training set to 400 images causes our approach to be generally more accurate. Finally, we show that efficient search methods reduce up to tenfold the complexity of the method while still producing competitive segmentations. In the future, we plan to include a dynamical model to improve the performance of the algorithm, to use semisupervised learning methods to reduce even more the dependence on rich and large training sets, and to design a shape model less dependent on the trai-ning set.
机译:我们提出了一种新的监督学习模型,用于在超声图像中自动分割心脏的左心室(LV)。我们解决了监督学习模型固有的以下问题:1)需要大量的训练图像; 2)对训练数据中不存在的成像条件的鲁棒性; 3)复杂的搜索过程。我们方法的创新之处在于将刚性和非刚性检测,模拟LV外观的深度学习方法以及有效的基于导数的搜索算法分离的公式。我们的方法的功能是使用包含400个带注释的图像(来自12个序列)的患病病例数据集和包含80个带注释的图像(来自两个序列)的正常病例的另一个数据集来评估的,其中两个集合均呈现LV的长轴视图。通过使用几种错误度量来计算手动分割和自动分割之间的相似程度,我们证明了我们的方法不仅具有很高的灵敏度和特异性,而且还提出了相对于黄金标准(由两位专家的手动注释计算)的变化部分病患的使用者间差异。我们还比较了我们的方法和两个最先进的LV细分模型在正常病例数据集上产生的细分,结果表明,我们的方法仅使用20次训练即可产生与这两种方法相当的细分图像并将训练集增加到400张图像使我们的方法总体上更加准确。最后,我们证明了有效的搜索方法最多可将方法的复杂度降低十倍,同时仍可产生竞争性细分。将来,我们计划包括一个动力学模型以改善算法的性能,使用半监督学习方法来减少对丰富训练集和大型训练集的依赖,并设计一个不依赖于训练的形状模型组。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号