首页> 外文期刊>Neurocomputing >Conditional BRUNO: A neural process for exchangeable labelled data
【24h】

Conditional BRUNO: A neural process for exchangeable labelled data

机译:条件布鲁诺:可交换标记数据的神经过程

获取原文
获取原文并翻译 | 示例

摘要

We present a neural process which models exchangeable sequences of high-dimensional complex observations conditionally on a set of labels or tags. Our model combines the expressiveness of deep neural networks with the data-efficiency of Gaussian processes, resulting in a probabilistic model for which the posterior distribution is easy to evaluate and sample from, and the computational complexity scales linearly with the number of observations. The advantages of the proposed architecture are demonstrated on a challenging few-shot view reconstruction task which requires generalization from short sequences of viewpoints, and a contextual bandits problem. (C) 2020 Elsevier B.V. All rights reserved.
机译:我们介绍了一个神经过程,其在一组标签或标签上根据一组标签或标签模拟可交换的高维复杂观察序列。我们的模型将深神经网络的表达性与高斯过程的数据效率结合在一起,导致概率模型易于评估和采样,并且计算复杂性与观察的数量线性缩放。拟议架构的优点是在挑战的几个镜头视图重建任务上证明了需要从观点的短序列和上下文匪徒问题的泛化。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号