首页> 外文期刊>Neurocomputing >Study of the influence of lexicon and language restrictions on computer assisted transcription of historical manuscripts
【24h】

Study of the influence of lexicon and language restrictions on computer assisted transcription of historical manuscripts

机译:词汇和语言限制对历史手稿计算机辅助转录的影响研究

获取原文
获取原文并翻译 | 示例

摘要

State-of-the-art Handwritten Text Recognition (HTR) systems allow transcribers to speed-up the transcription of handwritten text images. These systems provide transcribers an initial draft transcription that can be corrected with less effort than transcribing the handwritten text images from scratch. Currently, even the draft transcriptions offered by the most advanced HTR systems contain errors. Therefore, the supervision of this draft by a human transcriber is still necessary to obtain the correct transcription of the handwritten text images. This supervision can be eased by using interactive and assistive transcription systems, where the transcriber and the automatic system cooperate in the amending process.In this paper, the draft transcription is provided by an HTR system based on Convolutional and Recurrent Neural Networks with Bidirectional Long-Short Term Memory units, and the assistive system is fed by lattices generated by using Weighted Finite State Transducers. The influence of the lexicon and language restrictions on the performance of our computer assisted transcription system is evaluated on three historical manuscripts.The transcriptions offered by the proposed HTR system present very low error rates for the studied historical manuscripts. However, our assistive transcription system without lexicon or language restrictions is able to provide an additional reduction on the human effort required to correct the transcriptions in more than 50% over the transcriptions offered by the HTR system. (C) 2020 Elsevier B.V. All rights reserved.
机译:最先进的手写文本识别(HTR)系统允许转换加快手写文本图像的转录。这些系统提供了转录者的初始转录,这些转录可以通过较少的努力来纠正,而不是转录手写文本图像从头划痕。目前,即使是最先进的HTR系统提供的转录草案也包含错误。因此,人类抄写的对该草案的监督仍然需要获得手写文本图像的正确转录。通过使用交互式和辅助转录系统可以通过交互式和辅助转录系统来缓解该监督,其中经回件和自动系统在修改过程中配合。本文,转录草稿由基于具有双向的卷积和经常性神经网络的HTR系统提供短期内存单元,辅助系统由使用加权有限状态换能器产生的格子供给。 Lexicon和语言限制对计算机辅助转录系统性能的影响是在三个历史手稿上进行评估。所提出的HTR系统提供的转录为学习的历史稿件提供了非常低的错误率。然而,我们没有词典或语言限制的辅助转录系统能够额外减少纠正超过HTR系统提供的转录的50%以上的转录所需的人力努力。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第may21期|12-27|共16页
  • 作者单位

    Univ Politecn Valencia Pattern Recognit & Human Language Technol Res Ctr Camino Vera S-N Valencia 46022 Spain;

    Univ Politecn Valencia Pattern Recognit & Human Language Technol Res Ctr Camino Vera S-N Valencia 46022 Spain;

    Univ Politecn Valencia Pattern Recognit & Human Language Technol Res Ctr Camino Vera S-N Valencia 46022 Spain;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Handwritten text recognition; Deep learning; Interactive transcription;

    机译:手写文本识别;深入学习;交互式转录;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号