首页> 外文期刊>Neurocomputing >Data-driven finite-horizon optimal tracking control scheme for completely unknown discrete-time nonlinear systems
【24h】

Data-driven finite-horizon optimal tracking control scheme for completely unknown discrete-time nonlinear systems

机译:完全未知离散时间非线性系统的数据驱动有限地平线最优跟踪控制方案

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes finite-horizon optimal tracking control approach based on data for completely unknown discrete-time nonlinear affine systems. First, the identifier is designed by input and output data, which is used to identify system function and system model. And based on tracking error, the system function is transformed to the augmentation system with finite-time optimal performance. In finite time, by minimizing the performance index function, the iterative approximate dynamic programming (ADP) is utilized to solve Hamilton-Jacobi-Bellman (HJB) equation. The idea is carried by the policy iterative (PI) based on the model neural network, which makes the iterative control of the augmentation system available at the each step. At the same time, the action neural network is utilized to acquire the approximate optimal tracking control law and the critic neural network is used for approximating the optimal performance index function for the augmentation system. Afterwards, the paper show the analysis process that the convergence and stability for the iterative ADP algorithm and the weight estimation errors based on the PI, respectively. The end of the paper, a simulation example is applied to show the theoretical results and proposed approach. (C) 2019 Elsevier B.V. All rights reserved.
机译:本文提出了基于完全未知的离散时间非线性仿射系统数据的有限地平线最优跟踪控制方法。首先,标识符由输入和输出数据设计,该数据用于识别系统功能和系统模型。基于跟踪误差,系统功能随着有限时间的最佳性能转换为增强系统。在有限的时间内,通过最小化性能指标函数,利用迭代近似动态编程(ADP)来解决Hamilton-Jacobi-Bellman(HJB)方程。该想法是由基于模型神经网络的政策迭代(PI)携带,这使得可以在每个步骤中提供增强系统的迭代控制。同时,动作神经网络被利用来获取近似最佳跟踪控制法,并且批评神经网络用于近似增强系统的最佳性能指标函数。然后,本文分析过程分析过程分别是迭代ADP算法的收敛性和稳定性和基于PI的权重估计误差。纸张的末尾,应用模拟示例以显示理论结果和提出的方法。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号