首页> 外文会议>IEEE Data Driven Control and Learning Systems Conference >Data-Driven Adaptive Optimal Tracking Control for Completely Unknown Systems
【24h】

Data-Driven Adaptive Optimal Tracking Control for Completely Unknown Systems

机译:完全未知系统的数据驱动自适应最佳跟踪控制

获取原文

摘要

In this paper, an online data-driven based solution is developed for linear quadratic tracking (LQT) problem of linear systems with completely unknown dynamics. By applying the vectorization operator and Kronecker product, an adaptive identifier is first built to identify the unknown system dynamics, where a new adaptive law with guaranteed convergence is proposed. By using system augmentation method and introducing a discounted factor in the cost function, a compact form of LQT formulation is proposed, where the feedforward and feedback control actions can be obtained simultaneously. Finally, a new policy iteration is introduced to solve the derived augmented algebraic Riccati equation (ARE). Simulation results are presented to demonstrate the effectiveness of the proposed algorithm.
机译:本文针对动力学完全未知的线性系统的线性二次跟踪(LQT)问题,开发了一种基于在线数据驱动的解决方案。通过应用矢量化算子和Kronecker积,首先建立了一个自适应标识符来识别未知的系统动力学,在此基础上提出了一种具有保证收敛性的新的自适应律。通过使用系统扩充方法并在成本函数中引入折现因子,提出了一种紧凑形式的LQT公式,其中可以同时获得前馈和反馈控制动作。最后,引入新的策略迭代来求解导出的扩充代数Riccati方程(ARE)。仿真结果表明了该算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号