首页> 外文期刊>Neurocomputing >Data-driven finite-horizon optimal tracking control scheme for completely unknown discrete-time nonlinear systems
【24h】

Data-driven finite-horizon optimal tracking control scheme for completely unknown discrete-time nonlinear systems

机译:完全未知的离散时间非线性系统的数据驱动有限水平最优跟踪控制方案

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes finite-horizon optimal tracking control approach based on data for completely unknown discrete-time nonlinear affine systems. First, the identifier is designed by input and output data, which is used to identify system function and system model. And based on tracking error, the system function is transformed to the augmentation system with finite-time optimal performance. In finite time, by minimizing the performance index function, the iterative approximate dynamic programming (ADP) is utilized to solve Hamilton-Jacobi-Bellman (HJB) equation. The idea is carried by the policy iterative (PI) based on the model neural network, which makes the iterative control of the augmentation system available at the each step. At the same time, the action neural network is utilized to acquire the approximate optimal tracking control law and the critic neural network is used for approximating the optimal performance index function for the augmentation system. Afterwards, the paper show the analysis process that the convergence and stability for the iterative ADP algorithm and the weight estimation errors based on the PI, respectively. The end of the paper, a simulation example is applied to show the theoretical results and proposed approach. (C) 2019 Elsevier B.V. All rights reserved.
机译:针对完全未知的离散时间非线性仿射系统,提出了一种基于数据的有限水平最优跟踪控制方法。首先,通过输入和输出数据来设计标识符,该数据用于标识系统功能和系统模型。并且基于跟踪误差,将系统功能转换为具有有限时间最优性能的增强系统。在有限的时间内,通过最小化性能指标函数,使用迭代近似动态规划(ADP)来求解Hamilton-Jacobi-Bellman(HJB)方程。这个想法是由基于模型神经网络的策略迭代(PI)承载的,它使增强系统的迭代控制在每一步都可用。同时,利用动作神经网络获取近似最优跟踪控制律,利用批评神经网络近似增强系统的最优性能指标函数。然后,分析过程表明迭代ADP算法的收敛性和稳定性以及基于PI的权重估计误差。最后,通过一个仿真例子来说明理论结果和提出的方法。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号