首页> 外文期刊>Neurocomputing >Robust geometric model fitting based on iterative Hypergraph Construction and Partition
【24h】

Robust geometric model fitting based on iterative Hypergraph Construction and Partition

机译:基于迭代超图和分区的鲁棒几何模型拟合

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a novel Iterative Hypergraph Construction and Partition based model fitting method (termed IHCP), for handling multiple-structure data. Specifically, IHCP initially constructs a small-sized hypergraph, and then it performs hypergraph partition. Based on the partitioning results, IHCP iteratively updates the hypergraph by a novel guided sampling algorithm, and performs hypergraph partition. After a few iterations, IHCP is able to construct an effective hypergraph to represent the complex relationship between data points and model hypotheses, and obtain good partitioning results for model fitting as well. IHCP is very efficient since it avoids generating a large number of model hypotheses, and it is also very effective due to the excellent ability of the novel iterative strategy. Experimental results on real images show the superiority of the proposed IHCP method over several state-of-the-art model fitting methods. (C) 2018 Elsevier B.V. All rights reserved.
机译:在本文中,我们提出了一种新颖的迭代超图构造和基于分配的模型拟合方法(称为IHCP),用于处理多结构数据。具体地,IHCP最初构建一个小型超图,然后执行超图分区。基于分区结果,IHCP通过新颖的引导采样算法迭代更新超图,并执行超图分区。在几个迭代之后,IHCP能够构建有效的超图来表示数据点和模型假设之间的复杂关系,并获得模型配件的良好分区结果。 IHCP非常高效,因为它避免了产生大量模型假设,并且由于新颖的迭代策略的优异能力也是非常有效的。实验结果对真实的IHCP方法在几种最先进的模型拟合方法上显示了所提出的IHCP方法的优越性。 (c)2018年elestvier b.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2019年第7期|56-66|共11页
  • 作者单位

    Xiamen Univ Sch Informat Sci & Engn Fujian Key Lab Sensing & Comp Smart City Xiamen Peoples R China|Minjiang Univ Coll Comp & Control Engn Fujian Prov Key Lab Informat Proc & Intelligent C Fuzhou Fujian Peoples R China;

    Xiamen Univ Sch Informat Sci & Engn Fujian Key Lab Sensing & Comp Smart City Xiamen Peoples R China;

    Xiamen Univ Sch Informat Sci & Engn Fujian Key Lab Sensing & Comp Smart City Xiamen Peoples R China;

    Univ Macau Fac Sci & Technol Macau Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Hypergraph construction; Hypergraph partition; Geometric model fitting; Multiple-structure data;

    机译:超图构建;超图分区;几何模型拟合;多结构数据;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号