首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Searching for Representative Modes on Hypergraphs for Robust Geometric Model Fitting
【24h】

Searching for Representative Modes on Hypergraphs for Robust Geometric Model Fitting

机译:在超图上搜索代表性模式以进行鲁棒的几何模型拟合

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a simple and effective geometric model fitting method to fit and segment multi-structure data even in the presence of severe outliers. We cast the task of geometric model fitting as a representative mode-seeking problem on hypergraphs. Specifically, a hypergraph is first constructed, where the vertices represent model hypotheses and the hyperedges denote data points. The hypergraph involves higher-order similarities (instead of pairwise similarities used on a simple graph), and it can characterize complex relationships between model hypotheses and data points. In addition, we develop a hypergraph reduction technique to remove "insignificant" vertices while retaining as many "significant" vertices as possible in the hypergraph. Based on the simplified hypergraph, we then propose a novel mode-seeking algorithm to search for representative modes within reasonable time. Finally, the proposed mode-seeking algorithm detects modes according to two key elements, i.e., the weighting scores of vertices and the similarity analysis between vertices. Overall, the proposed fitting method is able to efficiently and effectively estimate the number and the parameters of model instances in the data simultaneously. Experimental results demonstrate that the proposed method achieves significant superiority over several state-of-the-art model fitting methods on both synthetic data and real images.
机译:在本文中,我们提出了一种简单有效的几何模型拟合方法,即使在存在严重异常值的情况下,也可以拟合和分割多结构数据。我们将几何模型拟合的任务作为超图上的代表性模式寻求问题。具体来说,首先构建一个超图,其中顶点表示模型假设,而超边表示数据点。超图涉及更高阶的相似性(而不是简单图上使用的成对相似性),并且它可以表征模型假设和数据点之间的复杂关系。另外,我们开发了一种超图归约技术,以去除“无意义”顶点,同时在超图中保留尽可能多的“显着”顶点。然后,基于简化的超图,我们提出了一种新颖的模式寻找算法,以在合理的时间内搜索代表性模式。最终,提出的寻模算法根据两个关键元素即顶点的权重得分和顶点之间的相似性分析来检测模式。总体而言,所提出的拟合方法能够同时有效地估计数据中模型实例的数量和参数。实验结果表明,该方法在合成数据和真实图像上均比几种最新模型拟合方法具有明显的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号